Advertisement

Delay Tolerant Network assisted flying Ad-Hoc network scenario: modeling and analytical perspective

  • Amartya MukherjeeEmail author
  • Nilanjan Dey
  • Rajesh Kumar
  • B. K. Panigrahi
  • Aboul Ella Hassanien
  • João Manuel R. S. Tavares
Article

Abstract

Flying Ad-Hoc networks (FANET) are the extended paradigm of the mobile Ad-Hoc networks and, perhaps, one of the most emerging research domains in the current era. A huge number of tangible applications have been developed in this domain. The main advantages of such networks are their easy deployment, scalability, and robustness. However, the sparseness of these networks is an inherent characteristic that is known to be a bottleneck. The main objective of this work was to provide an alternative solution for the intermittently connected FANET by considering the philosophy of the Delay Tolerant Network (DTN) approach. To realize the functionality of the DTN protocols in a three-dimensional (3D) space, a social FANET model is proposed. FANET nodes are supposed to have a sparse node density. Fundamentally, the proposed DTN assisted Flying Ad hoc Network exploits the DTN routing and mobility features. The new mobility modeling for 3D spaces was re-engineered and tested with well-known routing protocols to analyze the performance of the model based on node speed, density, buffer, latency, message overhead, and power consumption. The effectiveness of 3D mobility models has also been compared against the one of classical models. The obtained results reflect a significant enhanced performance of the suggested DTN protocol for sparse FANET in a social scenario.

Keywords

FANET DTN Routing Mobility model Delivery probability Latency Energy 

Notes

References

  1. 1.
    Mahony, R., Kumar, V., & Corke, P. (2012). Multirotor aerial vehicles: Modeling, Estimation, and Control of Quadrotor. IEEE Robotics and Automation Magazine, 19(3), 20–32.  https://doi.org/10.1109/mra.2012.2206474.Google Scholar
  2. 2.
    Dey, N., & Mukherjee, A. (2016). Embedded systems and robotics with open source tools. Boca Raton: CRC Press.Google Scholar
  3. 3.
    Bekmezci, I., Sahingoz, O. K., & Temel, Ş. (2013). Flying ad-hoc networks (FANETs): A survey. Ad Hoc Networks, 11(3), 1254–1270.Google Scholar
  4. 4.
    Kumari, K., Sah, B., & Maakar, S. (2015). A survey: Different mobility model for FANET. International Journal of Advanced Research in Computer Science and Software Engineering, 5(6), 1170–1173.Google Scholar
  5. 5.
    Sahingoz, O. K. (2014). Networking models in flying ad-hoc networks (FANETs): Concepts and challenges. Journal of Intelligent and Robotic Systems, 74(1–2), 513–527.Google Scholar
  6. 6.
    Zheng, Z., Sangaiah, A. K., & Wang, T. (2018). Adaptive communication protocols in flying ad hoc network. IEEE Communications Magazine, 56(1), 136–142.Google Scholar
  7. 7.
    Lewis, M., Templin, F., Bellur, B., & Ogier, R. (2002). Topology broadcast based on reverse-path forwarding (TBRPF). Internet Engineering Task Force (IETF) draft, draft-ietf-manettbrpf-06. txt.Google Scholar
  8. 8.
    Zhang, X., Cao, X., Yan, L., & Sung, D. (2016). A street-centric opportunistic routing protocol based on link correlation for urban vanets. IEEE Transactions on Mobile Computing, 1, 1.Google Scholar
  9. 9.
    Oubbati, O. S., Lakas, A., Zhou, F., Güneş, M., & Yagoubi, M. B. (2017). A survey on position-based routing protocols for Flying Ad hoc Networks (FANETs). Vehicular Communications, 10, 29–56.Google Scholar
  10. 10.
    Oubbati, O. S., Lakas, A., Zhou, F., Güneş, M., Lagraa, N., & Yagoubi, M. B. (2017). Intelligent UAV-assisted routing protocol for urban VANETs. Computer Communications, 107, 93–111.Google Scholar
  11. 11.
    Singh, H., & Rana, P. S. G. (2017). An emergency message dissemination protocol using greedy forwarding technique and clustering for VANETS. Ph.D. dissertation, 2017.Google Scholar
  12. 12.
    Cui, B., & Li, R. (2017). A greedy and neighbor aware data forwarding protocol in named data MANETs. In 2017 ninth international conference on ubiquitous and future networks (ICUFN) (pp. 934–939). IEEE, 2017.Google Scholar
  13. 13.
    Maxa, J.-A., Mahmoud, M.-S. B., & Larrieu, N. (2017). Survey on uaanet routing protocols and network security challenges. Ad Hoc & Sensor Wireless Networks, 37(1–4), 231–320.Google Scholar
  14. 14.
    Khan, I. L., Hussain, R., Iqbal, A., Shakeel, A., Alvi, S., Abbas, W., et al. (2018). Design and evaluation of self organizing, collision free MAC protocol for distributed cognitive radio networks. Wireless Personal Communications, 99(2), 1081–1101.Google Scholar
  15. 15.
    Rosário, D., Arnaldo Filho, J., Rosário, D., Santosy, A., & Gerla, M. (2017). A relay placement mechanism based on UAV mobility for satisfactory video transmissions. In Ad hoc networking workshop (Med-Hoc-Net), 2017 16th annual mediterranean (pp. 1–8). IEEE, 2017.Google Scholar
  16. 16.
    Patra, S., Balaji, A., Saha, S., Mukherjee, A., & Nandi, S. (2011). A qualitative survey on unicast routing algorithms in delay tolerant networks. In V. V. Das, G. Thomas & F. L. Gaol (Eds.), Information technology and mobile communication (pp. 291–296). Berlin: Springer.Google Scholar
  17. 17.
    Salem, A. O. A., Samara, G., & Alhmiedat, T. (2017). Performance analysis of dynamic source routing protocol. arXiv:1712.04622.
  18. 18.
    Han, G., Zhou, L., Wang, H., Zhang, W., & Chan, S. (2018). A source location protection protocol based on dynamic routing in WSNs for the social internet of things. Future Generation Computer Systems, 82, 689–697.Google Scholar
  19. 19.
    Bujari, A., Palazzi, C. E., & Ronzani, D. (2018). A comparison of stateless position-based packet routing algorithms for FANETs. IEEE Transactions on Mobile Computing, 1, 1.Google Scholar
  20. 20.
    Amjad, K., & Stocker, A. J. (2010). Impact of node density and mobility on the performance of AODV and DSR in MANETS. In 2010 7th international symposium on communication systems networks and digital signal processing (CSNDSP) (pp. 61–65). IEEE, 2010.Google Scholar
  21. 21.
    Mukherjee, A., Chakraborty, S., Azar, A. T., Bhattacharyay, S. K., Chatterjee, B., & Dey, N. (2014). Unmanned aerial system for post disaster identification. In 2014 international conference on circuits, communication, control and computing (I4C) (pp. 247–252). IEEE, 2014.Google Scholar
  22. 22.
    Priyan, M. K., & Devi, G. U. (2017). Energy efficient node selection algorithm based on node performance index and random waypoint mobility model in internet of vehicles. Cluster Computing, 21(1), 1–15.Google Scholar
  23. 23.
    Deng, S., Huang, L., Taheri, J., Yin, J., Zhou, M., & Zomaya, A. Y. (2017). Mobility-aware service composition in mobile communities. IEEE Transactions on Systems, Man, and Cybernetics: Systems, 47(3), 555–568.Google Scholar
  24. 24.
    Ren, J., Zhang, G., & Li, D. (2017). Multicast capacity for VANETs with directional antenna and delay constraint under random walk mobility model. IEEE Access, 5, 3958–3970.Google Scholar
  25. 25.
    Mukherjee, A., Dey, N., Kausar, N., Ashour, A. S., Taiar, R., & Hassanien, A. E. (2016). A disaster management specific mobility model for flying ad-hoc network. International Journal of Rough Sets and Data Analysis (IJRSDA), 3(3), 72–103.Google Scholar
  26. 26.
    Hayat, S., Yanmaz, E., & Muzaffar, R. (2016). Survey on unmanned aerial vehicle networks for civil applications: A communications viewpoint. IEEE Communications Surveys Tutorials, 18(4), 2624–2661.Google Scholar
  27. 27.
    He, R., Ai, B., Stüber, G. L., & Zhong, Z. (2017). Non-stationary mobile-to-mobile channel modeling using the Gauss–Markov mobility model. In 2017 9th international conference on wireless communications and signal processing (WCSP) (pp. 1–6). IEEE, 2017.Google Scholar
  28. 28.
    Broyles, D., Jabbar, A., & Sterbenz, J. P. G. (2010). Design and analysis of a 3–D Gauss–Markov mobility model for highly-dynamic airborne networks. In Proceedings of the international telemetering conference (ITC), (San Diego, CA). 2010.Google Scholar
  29. 29.
    Li, X., Zhang, T., & Li, J. (2017). A particle swarm mobility model for flying ad hoc networks. In GLOBECOM 20172017 IEEE global communications conference (pp. 1–6). IEEE, 2017.Google Scholar
  30. 30.
    Li, X., & Zhang, T. (2016). STGM: A spatiotemporally correlated group mobility model for flying ad hoc networks. In International conference on communications and networking in China (pp. 391–400). Cham: Springer, 2016.Google Scholar
  31. 31.
    Bouachir, O., Abrassart, A., Garcia, F., & Larrieu, N. (2014). A mobility model for UAV ad hoc network. In 2014 international conference on unmanned aircraft systems (ICUAS) (pp. 383–388). IEEE, 2014.Google Scholar
  32. 32.
    Radu, D., Cretu, A., Parrein, B., Yi, J., Avram, C., & Aştilean, A. (2018). Flying ad hoc network for emergency applications connected to a fog system. In International conference on emerging internetworking, data & web technologies (pp. 675–686). Cham: Springer, 2018.Google Scholar
  33. 33.
    Rosati, S., Krużelecki, K., Heitz, G., Floreano, D., & Rimoldi, B. (2016). Dynamic routing for flying ad hoc networks. IEEE Transactions on Vehicular Technology, 65(3), 1690–1700.Google Scholar
  34. 34.
    Le, M., Park, J.-S., & Gerla, M. (2006). UAV assisted disruption tolerant routing. In Military communications conference, 2006. MILCOM 2006. IEEE (pp. 1–5). IEEE, 2006.Google Scholar
  35. 35.
    Messous, M.-A., Senouci, S.-M., & Sedjelmaci, H. (2016). Network connectivity and area coverage for UAV fleet mobility model with energy constraint. In Wireless communications and networking conference (WCNC), 2016 IEEE (pp. 1–6). IEEE, 2016.Google Scholar
  36. 36.
    Zacarias, I., Gaspary, L. P., Kohl, A., Fernandes, R. Q., Stocchero, J. M., & de Freitas, E. P. (2017). Combining software-defined and delay-tolerant approaches in last-mile tactical edge networking. IEEE Communications Magazine, 55(10), 22–29.Google Scholar
  37. 37.
    Sánchez-García, J., Reina, D. G., & Toral, S. L. (2019). A distributed PSO-based exploration algorithm for a UAV network assisting a disaster scenario. Future Generation Computer Systems, 90, 129–148.Google Scholar
  38. 38.
    Karmakar, G., Kamruzzaman, J., & Nowsheen, N. (2018). An efficient data delivery mechanism for AUV-based Ad hoc UASNs. Future Generation Computer Systems, 86, 1193–1208.Google Scholar
  39. 39.
    Kerrache, C. A., Barka, E., Lagraa, N., & Lakas, A. (2017). Reputation-aware energy-efficient solution for FANET monitoring. In Wireless and mobile networking conference (WMNC), 2017 10th IFIP (pp. 1–6). IEEE, 2017.Google Scholar
  40. 40.
    De Vit, A. R. D., Marcon, C., Nunes, R. C., Webber, T., Sanchez, G., & Rolim, C. O. (2018). Energy saving on DTN using trajectory inference model. In Proceedings of the 33rd annual ACM symposium on applied computing (pp. 2132–2135). ACM, 2018.Google Scholar
  41. 41.
    Zhou, H., Leung, V. C., Zhu, C., Xu, S., & Fan, J. (2017). Predicting temporal social contact patterns for data forwarding in opportunistic mobile networks. IEEE Transactions on Vehicular Technology, 66(11), 10372–10383.Google Scholar
  42. 42.
    Guo, S., He, L., Gu, Y., Jiang, B., & He, T. (2014). Opportunistic flooding in low-duty-cycle wireless sensor networks with unreliable links. IEEE Transactions on Computers, 63(11), 2787–2802.MathSciNetzbMATHGoogle Scholar
  43. 43.
    Zhang, X., Neglia, G., Kurose, J., & Towsley, D. (2007). Performance modeling of epidemic routing. Computer Networks, 51(10), 2867–2891.zbMATHGoogle Scholar
  44. 44.
    Lindgren, A., Doria, A., Davies, E., & Grasic, S. (2012). Probabilistic routing protocol for intermittently connected networks. No. RFC 6693. 2012.Google Scholar
  45. 45.
    Spyropoulos, T., Psounis, K., & Raghavendra, C. S. (2005). Spray and wait: An efficient routing scheme for intermittently connected mobile networks. In Proceedings of the 2005 ACM SIGCOMM workshop on delay-tolerant networking (pp. 252–259). ACM, 2005.Google Scholar
  46. 46.
    Burgess, J., Gallagher, B., Jensen, D. D., & Levine, B. N. (2006). Maxprop: Routing for vehicle-based disruption-tolerant networks. In INFOCOM 2006. 25th IEEE international conference on computer communications. proceedings (pp. 1–11). IEEE, 2006.Google Scholar
  47. 47.
    Camp, T., Boleng, J., & Davies, V. (2002). A survey of mobility models for ad hoc network research. Wireless Communications and Mobile Computing, 2(5), 483–502.Google Scholar
  48. 48.
    González, R., Jayakumar, P., & Iagnemma, K. (2017). Stochastic mobility prediction of ground vehicles over large spatial regions: A geostatistical approach. Autonomous Robots, 41(2), 311–331.Google Scholar
  49. 49.
    Keränen, A., Ott, J., & Kärkkäinen, T. (2009). The ONE simulator for DTN protocol evaluation. In Proceedings of the 2nd international conference on simulation tools and techniques (p. 55). ICST (Institute for Computer Sciences, Social-Informatics and Telecommunications Engineering), 2009.Google Scholar
  50. 50.
    Abdelkader, T., Naik, K., Nayak, A., Goel, N., & Srivastava, V. (2016). A performance comparison of delay-tolerant network routing protocols. IEEE Network, 30(2), 46–53.Google Scholar
  51. 51.
    Cabacas, R. A., Nakamura, H., & Ra, I.-H. (2014). Energy consumption analysis of delay tolerant network routing protocols. International Journal of Software Engineering and Its Applications, 8(2), 1–10.Google Scholar
  52. 52.
    Ahmad, K., Fathima, M., Jain, V., & Fathima, A. (2017). FUZZY-Prophet: A novel routing protocol for opportunistic network. International Journal of Information Technology, 9(2), 121–127.Google Scholar
  53. 53.
    Ferreira, D. L., Nunes, B. A. A., & Obraczka, K. (2018). Scale-free properties of human mobility and applications to intelligent transportation systems. IEEE Transactions on Intelligent Transportation Systems, 19(11), 3736–3748.Google Scholar
  54. 54.
    Basta, N., ElNahas, A., Grossmann, H. P., & Abdennadher, S. (2018). Guess where I go?: A mobility predictor for smart vehicles. In Proceedings of the 17th international conference on mobile and ubiquitous multimedia (pp. 93–102). ACM, 2018.Google Scholar
  55. 55.
    Ghouti, L. (2016). Mobility prediction in mobile ad hoc networks using neural learning machines. Simulation Modelling Practice and Theory, 66, 104–121.Google Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  • Amartya Mukherjee
    • 1
    Email author
  • Nilanjan Dey
    • 2
  • Rajesh Kumar
    • 3
  • B. K. Panigrahi
    • 4
  • Aboul Ella Hassanien
    • 5
    • 6
    • 7
  • João Manuel R. S. Tavares
    • 8
  1. 1.Department of Computer Science and Engineering and BSHInstitute of Engineering and ManagementSalt Lake, KolkataIndia
  2. 2.Department of Information TechnologyTechno India College of TechnologyKolkataIndia
  3. 3.Faculty of Electrical EngineeringM.N.I.TJaipurIndia
  4. 4.Department of Electrical EngineeringIndian Institute of TechnologyDelhiIndia
  5. 5.Faculty of Computers and InformationCairo UniversityCairoEgypt
  6. 6.Faculty of Computer and InformationBeni Suef UniversityBeni SuefEgypt
  7. 7.Scientific Research Group in Egypt (SRGE)CairoEgypt
  8. 8.Instituto de Ciência e Inovação em Engenharia Mecânica e Engenharia Industrial, Departamento de Engenharia Mecânica, Faculdade de EngenhariaUniversidade do PortoPortoPortugal

Personalised recommendations