Advertisement

Exploring network-level performances of wireless nanonetworks utilizing gains of different types of nano-antennas with different materials

  • Novia NurainEmail author
  • Bashir M. Sabquat Bahar Talukder
  • Tanzila Choudhury
  • Suraiya Tairin
  • Marjan Ferdousi
  • Mahmuda Naznin
  • A. B. M. Alim Al Islam
Article
  • 14 Downloads

Abstract

Wireless nanonetworks are not a simple extension of traditional communication networks at the nano-scale. Owing to being a completely new communication paradigm, existing research in this field is still at an embryonic stage. Furthermore, most of the existing studies focus on performance enhancement of nanonetworks via designing new channel models and routing protocols. However, the impacts of different types of nano-antennas on the network-level performances of the wireless nanonetworks remain still unexplored in the literature. Therefore, in this paper, we explore the impacts of different well-known types of antennas such as patch, dipole, and loop nano-antennas on the network-level performances of wireless nanonetworks. We also investigate the performances of nanonetworks for different types of traditional materials (e.g., copper) and for nanomaterials (e.g., carbon nanotubes and graphene). We perform rigorous simulation using our customized ns-2 simulation to evaluate the network-level performances of nanonetworks exploiting different types of nano-antennas using different materials. Our evaluation reveals a number of novel findings pertinent to finding an efficient nano-antenna from its several alternatives for enhancing network-level performances of nanonetworks. Our evaluation demonstrates that a dipole nano-antenna using copper material exhibits around 51% better throughput and about 33% better end-to-end delay compared to other alternatives for large-size nanonetworks. Furthermore, our results are expected to exhibit high impacts on the future design of wireless nanonetworks through facilitating the process of finding the suitable type of nano-antenna and suitable material for the nano-antennas.

Keywords

Wireless nanonetworks Nano-antennas Antenna gain Network-level performances 

Notes

References

  1. 1.
    Abadal, S., Llatser, I., Alarcón, E., & Cabellos-Aparicio, A. (2014). Cooperative signal amplification for molecular communication in nanonetworks. Wireless Networks, 20(6), 1611–1626.CrossRefGoogle Scholar
  2. 2.
    Afsana, F., Mamun, S., Kaiser, M., & Ahmed, M. (2015). Outage capacity analysis of cluster-based forwarding scheme for body area network using nano-electromagnetic communication. In EICT (pp. 383–388). IEEE, Khulna, Bangladesh.Google Scholar
  3. 3.
    Akkari, N., Jornet, J. M., Wang, P., Fadel, E., Elrefaei, L., Malik, M. G. A., et al. (2016). Joint physical and link layer error control analysis for nanonetworks in the terahertz band. Wireless Networks, 22(4), 1221–1233.CrossRefGoogle Scholar
  4. 4.
    Akyildiz, I. F., & Jornet, J. M. (2010). Electromagnetic wireless nanosensor networks. Nano Communication Networks, 1(1), 3–19.CrossRefGoogle Scholar
  5. 5.
    Antenna-Theorycom. (2016a). Dipole antenna. www.antenna-theory.com/antennas/shortdipole.php. Accessed December 30, 2018.
  6. 6.
    Antenna-Theorycom. (2016b). Wave impedance. https://www.its.bldrdoc.gov/fs-1037/dir-040/_5856.htm. Accessed December 30, 2018.
  7. 7.
    Atakan, B., & Akan, O. B. (2010). Carbon nanotube-based nanoscale ad hoc networks. Communications Magazine, 48(6), 129–135.CrossRefGoogle Scholar
  8. 8.
    Aylott, J. W. (2003). Optical nanosensorsan enabling technology for intracellular measurements. Analyst, 128(4), 309–312.CrossRefGoogle Scholar
  9. 9.
    Balanis, C. A. (2016). Antenna theory: Analysis and design. Hoboken: Wiley.Google Scholar
  10. 10.
    Balasubramaniam, S., et al. (2012). Opportunistic routing through conjugation in bacteria communication nanonetwork. Nano Communication Networks, 3(1), 36–45.CrossRefGoogle Scholar
  11. 11.
    Botello-Mendez, A. R., Cruz-Silva, E., Romo-Herrera, J. M., Lopez-Urias, F., Terrones, M., Sumpter, B. G., et al. (2011). Quantum transport in graphene nanonetworks. Nano Letters, 11(8), 3058–3064.CrossRefGoogle Scholar
  12. 12.
    Che, R., Peng, L. M., Duan, X. F., Chen, Q., & Liang, X. (2004). Microwave absorption enhancement and complex permittivity and permeability of fe encapsulated within carbon nanotubes. Advanced Materials, 16(5), 401–405.CrossRefGoogle Scholar
  13. 13.
    Chen, C. J., Haik, Y., & Chatterjee, J. (2005). Development of nanotechnology for biomedical applications. In Conference, emerging information technology 2005 (pp. 1–4). IEEE, San Diego, CA.Google Scholar
  14. 14.
    Chou, C. T. (2012). Molecular circuits for decoding frequency coded signals in nano-communication networks. Nano Communication Networks, 3(1), 46–56.CrossRefGoogle Scholar
  15. 15.
    Ebbesen, T., Lezec, H., Hiura, H., Bennett, J., Ghaemi, H., Thio, T., et al. (1996). Electrical-conductivity of individual carbon nanotubes. Nature, 382(6586), 54–56.CrossRefGoogle Scholar
  16. 16.
    Elayan, H., Stefanini, C., Shubair, R. M., & Jornet, J. M. (2018). End-to-end noise model for intra-body terahertz nanoscale communication. IEEE Transactions on Nanobioscience, 17(4), 464–473.CrossRefGoogle Scholar
  17. 17.
    Fang, D. G. (2009). Antenna theory and microstrip antennas. Boca Raton: CRC Press.CrossRefGoogle Scholar
  18. 18.
    Freitas, R. A. (2005). What is nanomedicine? Nanomedicine: Nanotechnology. Biology and Medicine, 1(1), 2–9.Google Scholar
  19. 19.
    globe, C. (2016). Skin effect. https://circuitglobe.com/skin-effect.html. Accessed December 24, 2018.
  20. 20.
    Guney, A., Atakan, B., & Akan, O. B. (2012). Mobile ad hoc nanonetworks with collision-based molecular communication. IEEE Transactions on Mobile Computing, 11(3), 353–366.CrossRefGoogle Scholar
  21. 21.
    Hansen, D. C. (2008). Metal corrosion in the human body: The ultimate bio-corrosion scenario. The Electrochemical Society Interface, 17(2), 31–34.Google Scholar
  22. 22.
    Ian, F., Akyildiz, M. P., & Jornet, J. M. (2011). Nanonetworks: A new frontier in communications. Communications of the ACM, 54(11), 84–89.CrossRefGoogle Scholar
  23. 23.
    Johari, P., & Jornet, J. M. (2018). Nanoscale optical wireless channel model for intra-body communications: Geometrical, time, and frequency domain analyses. IEEE Transactions on Communications, 66(4), 1579–1593.CrossRefGoogle Scholar
  24. 24.
    Jornet, J. M. (2012). A joint energy harvesting and consumption model for self-powered nano-devices in nanonetworks. In 2012 IEEE international conference on communications (ICC) (pp. 6151–6156). IEEE, Ottwa, Canada.Google Scholar
  25. 25.
    Jornet, J. M., & Akyildiz, I. F. (2010). Channel capacity of electromagnetic nanonetworks in the terahertz band. In 2010 IEEE international conference on communications (ICC) (pp. 1–6). IEEE, Cape Town, South Africa.Google Scholar
  26. 26.
    Jornet, J. M., & Akyildiz, I. F. (2010b). Graphene-based nano-antennas for electromagnetic nanocommunications in the terahertz band. In Proceedings of the 4th European conference on antennas and propagation (EuCAP) (pp. 1–5). IEEE, Barcelona, Spain.Google Scholar
  27. 27.
    Jornet, J. M., & Akyildiz, I. F. (2011a). Information capacity of pulse-based wireless nanosensor networks. In 8th annual IEEE communications society conference on insensor, mesh and ad hoc communications and networks (SECON) (pp. 80–88). IEEE, Utah, USA.Google Scholar
  28. 28.
    Jornet, J. M., & Akyildiz, I. F. (2011). Low-weight channel coding for interference mitigation in electromagnetic nanonetworks in the terahertz band. In 2011 IEEE international conference on communications (ICC) (pp. 1–6). IEEE, Kyoto, Japan.Google Scholar
  29. 29.
    Jornet, J. M., & Akyildiz, I. F. (2013). Graphene-based plasmonic nano-antenna for terahertz band communication in nanonetworks. IEEE Journal on Selected Areas in Communications, 31(12), 685–694.CrossRefGoogle Scholar
  30. 30.
    Jornet, J. M., Pujol, J. C., & Pareta, J. S. (2012). Phlame: A physical layer aware mac protocol for electromagnetic nanonetworks in the terahertz band. Nano Communication Networks, 3(1), 74–81.CrossRefGoogle Scholar
  31. 31.
    Kadloor, S., Adve, R. S., & Eckford, A. W. (2012). Molecular communication using brownian motion with drift. IEEE Transactions on NanoBioscience, 11(2), 89–99.CrossRefGoogle Scholar
  32. 32.
    Lehtomäki, J. J., Bicen, A. O., & Akyildiz, I. F. (2015). On the nanoscale electromechanical wireless communication in the VHF band. IEEE Transactions on Communications, 63(1), 311–323.CrossRefGoogle Scholar
  33. 33.
    Liaskos, C., & Tsioliaridou, A. (2015). A promise of realizable, ultra-scalable communications at nano-scale: A multi-modal nano-machine architecture. IEEE Transactions on Computers, 64(5), 1282–1295.MathSciNetCrossRefzbMATHGoogle Scholar
  34. 34.
    Liu, Q., He, P., Yang, K., & Leng, S. (2014). Inter-symbol interference analysis of synaptic channel in molecular communications. In IEEE international conference on communications (ICC) (pp. 4424–4429). IEEE, Kyoto, Japan.Google Scholar
  35. 35.
    Llatser, I., Kremers, C., Cabellos-Aparicio, A., Jornet, J. M., Alarcón, E., & Chigrin, D. N. (2012). Graphene-based nano-patch antenna for terahertz radiation. Photonics and Nanostructures-Fundamentals and Applications, 10(4), 353–358.Google Scholar
  36. 36.
    Locatelli, A. (2011). Peculiar properties of loop nanoantennas. IEEE Photonics Journal, 3(5), 845–853.CrossRefGoogle Scholar
  37. 37.
    Matte, H. R., Subrahmanyam, K., & Rao, C. (2009). Novel magnetic properties of graphene: Presence of both ferromagnetic and antiferromagnetic features and other aspects. The Journal of Physical Chemistry C, 113(23), 9982–9985.CrossRefGoogle Scholar
  38. 38.
    Mohammadi, A., Sandoghdar, V., & Agio, M. (2009). Gold, copper, silver and aluminum nanoantennas to enhance spontaneous emission. Journal of Computational and Theoretical Nanoscience, 6(9), 2024–2030.CrossRefGoogle Scholar
  39. 39.
    Moore, M. J., & Nakano, T. (2011a). Addressing by beacon distances using molecular communication. Nano Communication Networks, 2(2), 161–173.CrossRefGoogle Scholar
  40. 40.
    Moore, M. J., & Nakano, T. (2011b). Synchronization of inhibitory molecular spike oscillators. In International conference on bio-inspired models of network, information, and computing systems (pp. 183–195). Springer.Google Scholar
  41. 41.
    Nafari, M., & Jornet, J. M. (2017). Modeling and performance analysis of metallic plasmonic nano-antennas for wireless optical communication in nanonetworks. IEEE Access, 5, 6389–6398.CrossRefGoogle Scholar
  42. 42.
    Nakano, T., & Moore, M. (2010). In-sequence molecule delivery over an aqueous medium. Nano Communication Networks, 1(3), 181–188.CrossRefGoogle Scholar
  43. 43.
    Nakano, T., & Shuai, J. (2011). Repeater design and modeling for molecular communication networks. In 2011 IEEE conference on computer communications workshops (INFOCOM WKSHPS) (pp. 501–506). IEEE, Shanghai, China.Google Scholar
  44. 44.
    Nakano, T., Okaie, Y., & Liu, J. Q. (2012). Channel model and capacity analysis of molecular communication with Brownian motion. IEEE Communications Letters, 16(6), 797–800.CrossRefGoogle Scholar
  45. 45.
    Piro, G., Grieco, L. A., Boggia, G., & Camarda, P. (2013). Nano-sim: Simulating electromagnetic-based nanonetworks in the network simulator 3. In Proceedings of the 6th international ICST conference on simulation tools and techniques, ICST (Institute for Computer Sciences, Social-Informatics and Telecommunications Engineering) (pp. 203–210). Cannes, France.Google Scholar
  46. 46.
    Razzari, L., Toma, A., Clerici, M., Shalaby, M., Das, G., Liberale, C., et al. (2013). Terahertz dipole nanoantenna arrays: Resonance characteristics. Plasmonics, 8(1), 133–138.CrossRefGoogle Scholar
  47. 47.
    Srinivas, K., Eckford, A. W., & Adve, R. S. (2012). Molecular communication in fluid media: The additive inverse gaussian noise channel. IEEE Transactions on Information Theory, 58(7), 4678–4692.MathSciNetCrossRefzbMATHGoogle Scholar
  48. 48.
    Tsioliaridou, A., Liaskos, C., Ioannidis, S., & Pitsillides, A. (2015). Corona: A coordinate and routing system for nanonetworks. In Proceedings of the second annual international conference on nanoscale computing and communication (pp. 18:1–18:6). ACM, Boston, MA, USA.Google Scholar
  49. 49.
    Tsioliaridou, A., Liaskos, C., Dedu, E., & Ioannidis, S. (2017). Packet routing in 3d nanonetworks: A lightweight, linear-path scheme. Nano Communication Networks, 12, 63–71.CrossRefGoogle Scholar
  50. 50.
    Wang, M., Zhou, J. H., Fang, Y. T., Xu, T., Zhou, J., & Wu, Q. (2018). Three-arm windmill plasmonic nanoantenna: Polarization and symmetry-dependent optical characteristics. In 2018 11th international symposium on communication systems, networks & digital signal processing (CSNDSP) (pp. 1–6). IEEE, Budapest, Hungary.Google Scholar
  51. 51.
    Wang, Z. L. (2008). Towards self-powered nanosystems: From nanogenerators to nanopiezotronics. Advanced Functional Materials, 18(22), 3553–3567.CrossRefGoogle Scholar
  52. 52.
    Yu, J., Huang, X., Wu, C., & Jiang, P. (2011). Permittivity, thermal conductivity and thermal stability of poly (vinylidene fluoride)/graphene nanocomposites. IEEE Transactions on Dielectrics and Electrical Insulation, 18(2), 478–484.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Department of CSEBangladesh University of Engineering and TechnologyDhakaBangladesh
  2. 2.Department of CSEPrairie View A&M UniversityPrairie ViewUSA

Personalised recommendations