An efficient data dissemination model for wireless sensor networks

  • Ramin YarinezhadEmail author
  • Seyyed Naser Hashemi


In a wireless sensor network, one of the most important constraints on sensor nodes is their power source, which is a battery. Sensor nodes carry a limited and generally irreplaceable battery. When providing a routing protocol for WSNs, it is necessary to take the energy constraint of sensor nodes into consideration. In this paper, a new routing algorithm based on a mobile sink is proposed. In the proposed algorithm, data is forwarded from the sensor nodes to the sink, which moves on four determined paths, by using a virtual cellular structure. In this algorithm when the sink moves from one cell to another, the routing in the network can be updated with minimum energy consumption and delay. The simulation results show that the proposed algorithm is more efficient than similar ones.


Wireless sensor networks Routing Energy efficiency Data collection 


  1. 1.
    Akyildiz, I. F., Su, W., Sankarasubramaniam, Y., & Cayirci, E. (2002). Wireless sensor networks: a survey. Computer Networks, 38(4), 393–422.CrossRefGoogle Scholar
  2. 2.
    Fadel, E., Gungor, V. C., Nassef, L., Akkari, N., Malik, M. A., Almasri, S., et al. (2015). A survey on wireless sensor networks for smart grid. Computer Communications, 71, 22–33.CrossRefGoogle Scholar
  3. 3.
    Khan, M. I., Gansterer, W. N., & Haring, G. (2013). Static vs. mobile sink: The influence of basic parameters on energy efficiency in wireless sensor networks. Computer Communications, 36(9), 965–978.CrossRefGoogle Scholar
  4. 4.
    Yick, J., Mukherjee, B., & Ghosal, D. (2008). Wireless sensor network survey. Computer Networks, 52(12), 2292–2330.CrossRefGoogle Scholar
  5. 5.
    Rault, T., Bouabdallah, A., & Challal, Y. (2014). Energy efficiency in wireless sensor networks: A top-down survey. Computer Networks, 67, 104–122.CrossRefGoogle Scholar
  6. 6.
    Gu, Y., Ren, F., Ji, Y., & Li, J. (2016). The evolution of sink mobility management in wireless sensor networks: A survey. IEEE Communications Surveys & Tutorials, 18(1), 507–524.CrossRefGoogle Scholar
  7. 7.
    Olariu, S., & Stojmenovic, I. (2006). Design guidelines for maximizing lifetime and avoiding energy holes in sensor networks with uniform distribution and uniform reporting. In INFOCOM 2006. 25th IEEE International Conference on Computer Communications. Proceedings (pp. 1-12). IEEE.Google Scholar
  8. 8.
    Shah, R. C., Roy, S., Jain, S., & Brunette, W. (2003). Data mules: Modeling and analysis of a three-tier architecture for sparse sensor networks. Ad Hoc Networks, 1(2), 215–233.CrossRefGoogle Scholar
  9. 9.
    Curry, R. M., & Smith, J. C. (2016). A survey of optimization algorithms for wireless sensor network lifetime maximization. Computers & Industrial Engineering, 101, 145–166.CrossRefGoogle Scholar
  10. 10.
    Luo, H., Ye, F., Cheng, J., Lu, S., & Zhang, L. (2005). TTDD: Two-tier data dissemination in large-scale wireless sensor networks. Wireless Networks, 11(1–2), 161–175.CrossRefGoogle Scholar
  11. 11.
    Erman, A. T., Dilo, A., & Havinga, P. (2012). A virtual infrastructure based on honeycomb tessellation for data dissemination in multi-sink mobile wireless sensor networks. EURASIP Journal on Wireless Communications and Networking, 2012(1), 17.CrossRefGoogle Scholar
  12. 12.
    Chen, X., & Xu, M. (2005). A geographical cellular-like architecture for wireless sensor networks. In International Conference on Mobile Ad-Hoc and Sensor Networks (pp. 249-258). Springer, Berlin, Heidelberg.Google Scholar
  13. 13.
    Tunca, C., Isik, S., Donmez, M. Y., & Ersoy, C. (2015). Ring routing: An energy-efficient routing protocol for wireless sensor networks with a mobile sink. IEEE Transactions on Mobile Computing, 14(9), 1947–1960.CrossRefGoogle Scholar
  14. 14.
    Hamida, E. B., & Chelius, G. (2008). A line-based data dissemination protocol for wireless sensor networks with mobile sink. In Communications, 2008. ICC’08. IEEE International Conference on (pp. 2201-2205). IEEE.Google Scholar
  15. 15.
    Sharma, S., Puthal, D., Jena, S. K., Zomaya, A. Y., & Ranjan, R. (2017). Rendezvous based routing protocol for wireless sensor networks with mobile sink. The Journal of Supercomputing, 73(3), 1168–1188.CrossRefGoogle Scholar
  16. 16.
    Abuarqoub, A., Hammoudeh, M., Adebisi, B., Jabbar, S., Bounceur, A., & Al-Bashar, H. (2017). Dynamic clustering and management of mobile wireless sensor networks. Computer Networks, 117, 62–75.CrossRefGoogle Scholar
  17. 17.
    Saranya, V., Shankar, S., & Kanagachidambaresan, G. R. (2018). Energy efficient clustering scheme (EECS) for wireless sensor network with mobile sink. Wireless Personal Communications, 1-15.Google Scholar
  18. 18.
    Chen, T. S., Tsai, H. W., Chang, Y. H., & Chen, T. C. (2013). Geographic convergecast using mobile sink in wireless sensor networks. Computer Communications, 36(4), 445–458.CrossRefGoogle Scholar
  19. 19.
    Salarian, H., Chin, K. W., & Naghdy, F. (2014). An energy-efficient mobile-sink path selection strategy for wireless sensor networks. IEEE Transactions on Vehicular Technology, 63(5), 2407–2419.CrossRefGoogle Scholar
  20. 20.
    Zhu, C., Wu, S., Han, G., Shu, L., & Wu, H. (2015). A tree-cluster-based data-gathering algorithm for industrial WSNs with a mobile sink. IEEE Access, 3, 381–396.CrossRefGoogle Scholar
  21. 21.
    Khan, A. W., Abdullah, A. H., Razzaque, M. A., & Bangash, J. I. (2015). VGDRA: a virtual grid-based dynamic routes adjustment scheme for mobile sink-based wireless sensor networks. IEEE Sensors Journal, 15(1), 526–534.CrossRefGoogle Scholar
  22. 22.
    Wen, W., Zhao, S., Shang, C., & Chang, C. Y. (2018). EAPC: Energy-aware path construction for data collection using mobile sink in wireless sensor networks. IEEE Sensors Journal, 18(2), 890–901.CrossRefGoogle Scholar
  23. 23.
    Arthi, K., & Lochana, A. S. R. (2018). Zone-based dual sub sink for network lifetime maximization in wireless sensor network. Cluster Computing, 1-11.Google Scholar
  24. 24.
    Heinzelman, W. B., Chandrakasan, A. P., & Balakrishnan, H. (2002). An application-specific protocol architecture for wireless microsensor networks. IEEE Transactions on Wireless Communications, 1(4), 660–670.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Department of Mathematics and Computer ScienceAmirkabir University of TechnologyTehranIran

Personalised recommendations