Advertisement

Wireless Networks

, Volume 25, Issue 4, pp 2157–2171 | Cite as

Mobile sensor nodes scheduling for bounded region coverage

  • Ganala SantoshiEmail author
Article
  • 34 Downloads

Abstract

Mobile elements have shown the advantages in wireless sensor networks not only in data collection and transmission but also in the field of region coverage. The mobile sensor nodes (MSNs) whose mobility is controlled, visits the predetermined locations and collects the environmental information as per the procedure called MSNs traversal algorithms. The major performance bottleneck in MSNs is the energy source which is impractical to replace after the deployment. In random deployment, single or a group of MSNs may fall at the same location or at different locations, whose starting positions of traversal and traversal paths may differ from the preplanned. This work formulates the problem of scheduling the MSNs in distributed manner so that the entire region is covered without coverage holes with minimum energy depletion. Finally, some computationally practical algorithms for multiple MSNs with fault and non-fault tolerant support are presented and their performances compared.

Keywords

Sensor coverage Mobility Optimal Traversal path 

References

  1. 1.
    Ammari, H. M., & Das, S. K. (2008). Integrated coverage and connectivity in wireless sensor networks: A two-dimensional percolation problem. IEEE Transactions on Computers, 57(10), 1423–1434.MathSciNetCrossRefzbMATHGoogle Scholar
  2. 2.
    An Enginnering Handbook. (1977). DC motors, speed controls, servo systems. Oxford: Pergamon Press.Google Scholar
  3. 3.
    Bai, X., Yun, Z., Xuan, D., Lai, T. H., & Jia, W. (2010). Optimal patterns for four-connectivity and full coverage in wireless sensor networks. IEEE Transactions on Mobile Computing, 9(3), 435–448.  https://doi.org/10.1109/TMC.2009.143.CrossRefGoogle Scholar
  4. 4.
    Cardei, M., Thai, M. T., Li, Y., & Wu, W. (2005). Energy-efficient target coverage in wireless sensor networks. Proceedings IEEE 24th Annual Joint Conference of the IEEE Computer and Communications Societies, 3, 1976–1984.  https://doi.org/10.1109/INFCOM.2005.1498475.CrossRefGoogle Scholar
  5. 5.
    Dong, Q., & Dargie, W. (2013). A survey on mobility and mobility-aware MAC protocols in wireless sensor networks. IEEE Communications Surveys Tutorials, 15(1), 88–100.  https://doi.org/10.1109/SURV.2012.013012.00051.CrossRefGoogle Scholar
  6. 6.
    D’Souza, R. J., & Santoshi, G. (2012). Optimal 2-coverage by heterogeneous mobile sensor nodes using triangular scheme. In Elsevier procedia technology, 2nd international conference on computer, communication, control and information technology (C3IT-2012) on February 25–26 (vol. 4, pp. 187–195).  https://doi.org/10.1016/j.protcy.2012.05.028. http://www.sciencedirect.com/science/article/pii/S2212.
  7. 7.
    D’Souza, R. J., & Santoshi, G. (2014). Dynamic coverage by hemegeneous mobile sensor nodes using tri-hexagonal scheme. In Emerging research in electronics, computer science and technology. Springer lecture notes in electrical engineering.  https://doi.org/10.1007/978-81-322-1157-0-93.
  8. 8.
    Fu, X., Xu, Z., Peng, Q., You, J., Fu, L., Wang, X., & Lu, S. (2017). Conmap: A novel framework for optimizing multicast energy in delay-constrained mobile wireless networks. In Proceedings of the 18th ACM international symposium on mobile Ad hoc networking and computing, Mobihoc ’17 (pp. 2:1–2:10). New York, NY: ACM.  https://doi.org/10.1145/3084041.3084047.
  9. 9.
    Fu, L., Wang, X., & Kumar, P. R. (2017). Are we connected? Optimal determination of source—Destination connectivity in random networks. IEEE/ACM Transactions on Networking, 25(2), 751–764.  https://doi.org/10.1109/TNET.2016.2604278.CrossRefGoogle Scholar
  10. 10.
    Gong, H., Fu, L., Fu, X., Zhao, L., Wang, K., & Wang, X. (2017). Distributed multicast tree construction in wireless sensor networks. IEEE Transactions on Information Theory, 63(1), 280–296.  https://doi.org/10.1109/TIT.2016.2623317.MathSciNetCrossRefzbMATHGoogle Scholar
  11. 11.
    He, S., Chen, J., Sun, Y., Yau, D., & Yip, N. K. (2010). On optimal information capture by energy-constrained mobile sensors. IEEE Transactions on Vehicular Technology, 59(5), 2472–2484.  https://doi.org/10.1109/TVT.2010.2044592.CrossRefGoogle Scholar
  12. 12.
    Khan, A., Qiao, C., & Tripathi, S. K. (2007). Mobile traversal schemes based on triangulation coverage. Mobile Networks and Applications, 12(5), 422–437.  https://doi.org/10.1007/s11036-008-0044-6.CrossRefGoogle Scholar
  13. 13.
    Kreshner, R. (1939). The number of cirlces covering a set. American Journal of Mathematics, 61(3), 665–671.MathSciNetCrossRefGoogle Scholar
  14. 14.
    Mikhaylov, K., & Tervonen, J. (2013). Energy Consumption of the mobile wireless sensor network’s node with controlled mobility. In Advanced information networking and applications workshops (WAINA), 2013 27th international conference (pp. 1582–1587).  https://doi.org/10.1109/WAINA.2013.86.
  15. 15.
    Purohit, G. N., Verma, S., & Sharma, M. (2010). Hexagonal coverage by mobile sensor nodes. International Journal of Computers and Network Security, 2(4), 41–44.Google Scholar
  16. 16.
    Rowe, N. C. (1997). Obtaining optimal mobile-robot paths with non-smooth anisotropic cost functions using qualitative-state reasonin. International Journal of Robotics Research, 16, 375–399.CrossRefGoogle Scholar
  17. 17.
    Rowe, N., & Ross, R. (1990). Optimal grid-free path planning across arbitrarily contoured terrain with anisotropic friction and gravity effects. IEEE Transactions on Robotics and Automation, 6(5), 540–553.  https://doi.org/10.1109/70.62043.CrossRefGoogle Scholar
  18. 18.
    Rula, A. A., & Nuttall, J. C. J. (1971). An analysis of ground mobility models (ANAMOB). Army Engineer Waterways Experiment Station Vicksburg MS. Logistics, Military Facilities and Supplies.Google Scholar
  19. 19.
    Santoshi, G., & D’Souza, R. J. (2013). Fault tolerant mobile sensor node traversal schemes based on hexagonal coverage. Singapore: World Scientific Journal - Communications.Google Scholar
  20. 20.
    Santoshi, G., & D’Souza, R. J. (2013). Optimal 1-coverage by homogeneous mobile sensor nodes using hexagonal scheme. Networking Science,.  https://doi.org/10.1007/s13119-013-0027-1.Google Scholar
  21. 21.
    Somasundara, A. A., Ramamoorthy, A., & Srivastava, M. B. (2007). Mobile element scheduling with dynamic deadlines. IEEE Transactions on Mobile Computing, 6(4), 395–410.CrossRefGoogle Scholar
  22. 22.
    Song, G., Zhou, Y., Ding, F., & Song, A. (2008). A mobile sensor network system for monitoring of unfriendly environments. Sensors, 8(11), 7259–7274.  https://doi.org/10.3390/s8117259.CrossRefGoogle Scholar
  23. 23.
    Song, G., Zhou, Y., Wei, Z., & Song, A. (2008). A smart node architecture for adding mobility to wireless sensor networks. Sensors and Actuators A: Physical, 147(1), 216–221.  https://doi.org/10.1016/j.sna.2008.05.005.CrossRefGoogle Scholar
  24. 24.
    Sun, Z., & Reif, J. (2003). On energy-minimizing paths on terrains for a mobile robot. In Robotics and automation, proceedings of IEEE international conference, ICRA ’03 (vol. 3, pp. 3782–3788).  https://doi.org/10.1109/ROBOT.2003.1242177.
  25. 25.
    Wang, G., Irwin, M., Berman, P., Fu, H., & La Porta, T. (2005). Optimizing sensor movement planning for energy efficiency. In: Low power electronics and design. Proceedings of the 2005 international symposium, ISLPED ’05.Google Scholar
  26. 26.
    Wang, B. (2011). Coverage problems in sensor networks: A survey. ACM Computing Surveys, 43(4), 32.CrossRefGoogle Scholar
  27. 27.
    Wang, G., Irwin, M. J., Fu, H., Berman, P., Zhang, W., & Porta, T. L. (2011). Optimizing sensor movement planning for energy efficiency. ACM Transactions on Sensor Networks, 7(4), 33:1–33:17.  https://doi.org/10.1145/1921621.1921627.CrossRefGoogle Scholar
  28. 28.
    Yu, J., Wan, S., Cheng, X., & Yu, D. (2017). Coverage contribution area based \(k\) -coverage for wireless sensor networks. IEEE Transactions on Vehicular Technology, 66(9), 8510–8523.  https://doi.org/10.1109/TVT.2017.2681692.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  1. 1.School of ComputingSASTRA Deemed UniversityThanjavurIndia

Personalised recommendations