Wireless Networks

, Volume 25, Issue 4, pp 2081–2090 | Cite as

Two-phase downlink subcarrier allocation for multicell OFDMA systems

  • Tsung-Hsiu ChihEmail author
  • Szu-Lin Su
  • Tsung-Min Hung


To increase spectrum efficiency, the radio resource management with frequency reuse factor = 1 is usually adopted in multi-cell orthogonal frequency division multiple access systems. Such a reuse-one strategy results in severe co-channel interference, especially penalizing mobile users near the cell border. This paper presents an effective subcarrier-assignment algorithm to mitigate the co-channel interference for multi-cell orthogonal frequency division multiple access downlink systems. The proposed algorithm consists of an initial assignment phase and a compensation phase. In the first phase, each subcarrier is assigned to mobile users with higher channel gains and lower mutual co-channel interferences. The second phase further compensates mobile users who do not get adequate resources to meet the requirement of quality of service in the first phase. System simulation results reveal that the proposed algorithm can significantly improve the number of QoS-satisfied users compared with previous used scheme.


Cellular networks Graph theory Intercell interference coordination (ICIC) Interference suppression Resource management 


  1. 1.
    Song, G., & Li, Y. (2005). Cross-layer optimization for OFDM wireless networks—part I: theoretical framework. IEEE Transactions on Wireless Communications, 4(2), 614–624.CrossRefGoogle Scholar
  2. 2.
    Kim, I., Park, I. S., & Lee, Y. H. (2006). Use of linear programming for dynamic subcarrier and bit allocation in multiuser OFDM. IEEE Transactions on Vehicular Technology, 55(4), 1195–1207.CrossRefGoogle Scholar
  3. 3.
    Ali, S. H., & Leung, V. C. M. (2009). Dynamic frequency allocation in fractional frequency reused OFDMA networks. IEEE Transactions on Wireless Communications, 8(8), 4286–4295.CrossRefGoogle Scholar
  4. 4.
    Wong, C. Y., Cheng, R. S., Letaief, K. B., & Murch, R. D. (1999). Multiuser OFDM with adaptive subcarrier, bit and power allocation. IEEE Journal on Selected Areas in Communications, 17(10), 1747–1758.CrossRefGoogle Scholar
  5. 5.
    Ermolova, N. Y., & Makarevitch, B. (2007). Low complexity adaptive power and subcarrier allocation for OFDMA. IEEE Transactions on Wireless Communications, 6(2), 433–437.CrossRefGoogle Scholar
  6. 6.
    Ganti, A., Klein, T. E., & Haner, M. (2006). Base station assignment and power control algorithms for data users in a wireless multiaccess framework. IEEE Transactions on Wireless Communications, 5(9), 2493–2503.CrossRefGoogle Scholar
  7. 7.
    Sadr, S., Anpalagan, A., & Raahemifar, K. (2009). Radio resource allocation algorithms for the downlink of multiuser OFDM communication systems. IEEE Communications Surveys & Tutorials, 11(3), 92–106.CrossRefGoogle Scholar
  8. 8.
    Li, G., & Liu, H. (2006). Downlink radio resource allocation for multi-cell OFDMA system. IEEE Transactions on Wireless Communications, 5(12), 3451–3459.CrossRefGoogle Scholar
  9. 9.
    Venturino, L., Prasad, N., & Wang, X. (2009). Coordinated scheduling and power allocation in downlink multicell OFDMA networks. IEEE Transactions on Vehicular Technology, 58(6), 2835–2848.CrossRefGoogle Scholar
  10. 10.
    Gault, S., Hachem, W., & Ciblat, P. (2007). Performance analysis of an OFDMA transmission system in a multicell environment. IEEE Transactions on Communications, 55(4), 740–751.CrossRefGoogle Scholar
  11. 11.
    Lei, H., Zhang, L., Zhang, X., & Yang, D. (2007). A novel multi-cell OFDMA system structure using fractional frequency reuse. In Proceeding of IEEE PIMRC (pp. 1–5).Google Scholar
  12. 12.
    Ghaffar, R., & Knopp, R. (2010). Fractional frequency reuse and interference suppression for OFDMA networks. In Proceeding of international Symposium on modeling and optimization in mobile, Ad Hoc, and wireless networks (pp. 273–277).Google Scholar
  13. 13.
    Doppler, K., Wijting, C., & Valkealahti, K. (2009). Interference aware scheduling for soft frequency reuse. In Proceeding of IEEE 69th vehicular technology conference (pp. 1–5).Google Scholar
  14. 14.
    Bohge, M., Gross, J., & Wolisz, A. (2009). Optimal power masking in soft frequency reuse based OFDMA networks. In Proceeding of European wireless conference (pp. 162–166).Google Scholar
  15. 15.
    Kosta, C., Hunt, B., Quddus, A. U., & Tafazolli, R. (2013). On interference avoidance through inter-cell interference coordination (ICIC) based on OFDMA mobile systems. IEEE Communications Surveys & Tutorials, 15(3), 973–995.CrossRefGoogle Scholar
  16. 16.
    Hamza, A. S., Khalifa, S. S., Hamza, H. S., & Elsayed, K. (2013). A survey on inter-cell interference coordination techniques in ofdma-based cellular networks. IEEE Communications Surveys & Tutorials, 15(4), 1642–1670.CrossRefGoogle Scholar
  17. 17.
    Lv, G., Zhu, S., & Hui, H. (2009). A distributed power allocation algorithm with inter-cell interference coordination for multi-cell OFDMA systems. In Proceeding of IEEE GLOBECOM (pp. 1–6).Google Scholar
  18. 18.
    López-Pérez, D., Güvenç, Í., de la Roche, G., Kountouris, M., Quek, T. Q. S., & Zhang, J. (2011). Enhanced intercell interference coordination challenges in heterogeneous networks. IEEE Wireless Communications, 18(3), 22–30.CrossRefGoogle Scholar
  19. 19.
    Boudreau, G., Panicker, J., Guo, N., Chang, R., Wang, N., & Vrzic, S. (2009). Interference coordination and cancellation for 4G networks. IEEE Communications Magazine, 47(4), 74–81.CrossRefGoogle Scholar
  20. 20.
    Jorswieck, E., & Mochaourab, R. (2009). Power control game in protected and shared bands: Manipulability of Nash equilibrium. In Proceeding of international conference on game theory for networks (pp. 428–437).Google Scholar
  21. 21.
    La, Q. D., Chew, Y. H., & Soong, B.-H. (2009). An interference minimization game theoretic subcarrier allocation algorithm for OFDMA-based distributed systems. In Proceeding of IEEE GLOBECOM (pp. 2799–2804).Google Scholar
  22. 22.
    Yu, Q., Chen, J., Fan, Y., Shen, X., & Sun, Y. (2010). Multi-channel assignment in wireless sensor networks: A game theoretic approach. In Proceeding of IEEE INFOCOM (pp. 1127–1135).Google Scholar
  23. 23.
    Necker, M. C. (2008). Interference coordination in cellular OFDMA networks. IEEE Network, 22(6), 12–19.CrossRefGoogle Scholar
  24. 24.
    Chang, R. Y., Tao, Z., Zhang, J., & Kuo, C. -C. J. (2009). A graph approach to dynamic fractional frequency reuse (FFR) in multi-cell OFDMA networks. In Proceeding of IEEE international conference on communications (pp. 1–6).Google Scholar
  25. 25.
    Chang, R. Y., Tao, Z., Zhang, J., & Kuo, C.-C. J. (2009). Multicell OFDMA downlink resource allocation using a graphic framework. IEEE Transactions on Vehicular Technology, 58(7), 3494–3507.CrossRefGoogle Scholar
  26. 26.
    Zhang, H., Liu, H., Cheng, J., & Leung, V. C. M. (2018). Downlink energy efficiency of power allocation and wireless backhaul bandwidth allocation in heterogeneous small cell networks. IEEE Transactions on Communications, 66(4), 1705–1716.CrossRefGoogle Scholar
  27. 27.
    Zhang, H., Liu, N., Long, K., Cheng, J., Leung, V. C. M., & Hanzo, L. (2018). Energy efficient subchannel and power allocation for the software defined heterogeneous VLC and RF networks. Early Access: IEEE Transactions on Selected Areas in Communication.CrossRefGoogle Scholar
  28. 28.
    Mokari, N., Alavi, F., Parsaeefard, S., & Le-Ngoc, T. (2016). Limited-feedback resource allocation in heterogeneous cellular networks. IEEE Transactions on Vehicular Technology, 65(4), 2509–2521.CrossRefGoogle Scholar
  29. 29.
    Zhang, H., Yang, N., Long, K., Pan, M., Karagiannidis, G. K., & Leung, V. C. M. (2018). Secure communications in NOMA system: Subcarrier assignment and power allocation. IEEE Transactions on Selected Areas in Communication, Accepted.Google Scholar
  30. 30.
    Yassin, M., Lahoud, S., Ibrahim, M., Khawam, K., Mezher, D., & Cousin, B. (2017). Cooperative resource management and power allocation for multiuser OFDMA networks. IET Communications, 11(16), 2552–2559.CrossRefGoogle Scholar
  31. 31.
    Ferdouse, L., Ejaz, W., Raahemifar, K., Anpalagan, A., & Markandaier, M. (2017). Interference and throughput aware resource allocation for multi-class D2D in 5G networks. IET Communications, 11(8), 1241–1250.CrossRefGoogle Scholar
  32. 32.
    Nam, C., Joo, C., & Bahk, S. (2015). Joint subcarrier assignment and power allocation in full-duplex OFDMA networks. IEEE Transactions on Wireless Communication, 14(6), 3108–3119.CrossRefGoogle Scholar
  33. 33.
    Kang, Y., Kim, K., & Park, H. (2007). Efficient DFT-based channel estimation for OFDM systems on multipath channels. IET Communications, 1(2), 197–202.CrossRefGoogle Scholar
  34. 34.
    Coelho, F., Dinis, R., & Montezuma, P. (2011). Efficient channel estimation for single frequency broadcast systems. In Proceeding of VTC (pp. 1–6).Google Scholar
  35. 35.
    Raval, J. K., Patel, V. K., & Shah, D. J. (2013). Research on pilot based channel estimation for LTE downlink using LS and MMSE technique. International Journal of Electronics and Communication Engineering and Technology, 4(3), 70–82.Google Scholar
  36. 36.
    Liu, Y.-S., You, S. D., & Liu, Y.-M. (2015). Iterative channel estimation method for long-term evolution downlink transmission. IET Communications, 9(15), 1906–1914.CrossRefGoogle Scholar
  37. 37.
    Welsh, D. J. A., & Powell, M. B. (1967). An upper bound for the chromatic number of a graph and its application to timetabling problems. The Computer Journal, 10(1), 85–86.CrossRefzbMATHGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Department of Electrical Engineering, Institute of Computer and Communication EngineeringNational Cheng Kung UniversityTainanTaiwan

Personalised recommendations