Advertisement

Wireless Networks

, Volume 25, Issue 4, pp 2065–2079 | Cite as

Energy consumption minimization and throughput improvement in cognitive radio networks by joint optimization of detection threshold, sensing time and user selection

  • Mohammad Sadeghian KerdabadiEmail author
  • Reza Ghazizadeh
  • Hamid Farrokhi
  • Maryam Najimi
Article

Abstract

Cooperative spectrum sensing schemes proposed to solve the hidden terminal problem and mitigate multipath fading and shadowing effects, which enhance the sensing performance and throughput in cognitive radio (CR) neworks. However, increasing the number of cooperative SUs leads to more communication overhead, which will increase the energy consumption of the CR network. In this paper, a new scheme is proposed to solve the joint optimization problem of the sensing time, the detection threshold and the selection of the sensing and data transmitting secondary users (SUs) for improvement of the throughput and minimization of the energy consumption of the CR network under the constrains on the global probability of detection and global probability of false alarm. For these purposes, we find the optimal values of detection threshold and sensing time such that the detection constraints are satisfied. The convex optimization methods are used to determine the sensing and data transmitting SUs. The simulation results show that there exists the optimal detection threshold and sensing time for selected sensing and transmitting SUs that can improve the average throughput and minimize the energy consumption of the CR network in comparison to other schemes.

Keywords

Cognitive radio Cooperative spectrum sensing Throughput Energy Detection threshold Sensing time 

References

  1. 1.
    Haykin, S. (2005). Cognitive radio: Brain-empowered wireless communications. IEEE Journal on Selected Areas in Communications, 23(2), 201–220.CrossRefGoogle Scholar
  2. 2.
    Digham, F. F., Alouini, M. S., & Simon, M. K. (2007). On the energy detection of unknown signals over fading channels. IEEE Transactions on Communications, 55(1), 21–24.CrossRefGoogle Scholar
  3. 3.
    Akyildiz, I. F., Lo, B. F., & Balakrishnan, R. (2011). Cooperative spectrum sensing in cognitive radio networks: A survey. Physical Communication, 4(1), 40–62.CrossRefGoogle Scholar
  4. 4.
    Liang, Y. C., Zeng, Y., Peh, E. C., & Hoang, A. T. (2008). Sensing-throughput tradeoff for cognitive radio networks. IEEE Transactions on Wireless Communications, 7(4), 1326–1337.CrossRefGoogle Scholar
  5. 5.
    Peh, E. C. Y., Liang, Y. C., Guan, Y. L., & Zeng, Y. (2009). Optimization of cooperative sensing in cognitive radio networks: A sensing-throughput tradeoff view. IEEE Transactions on Vehicular Technology, 58(9), 5294–5299.CrossRefGoogle Scholar
  6. 6.
    Tang, L., Chen, Y., Hines, E. L., & Alouini, M.-S. (2011). Effect of primary user traffic on sensing-throughput tradeoff for cognitive radios. IEEE Transactions on Wireless Communications, 10(4), 1063–1068.CrossRefGoogle Scholar
  7. 7.
    Kim, S. J., & Giannakis, G. B. (2009). Rate-optimal and reduced-complexity sequential sensing algorithms for cognitive OFDM radios. EURASIP Journal on Advances in Signal Processing, 2009, 2.CrossRefzbMATHGoogle Scholar
  8. 8.
    Zhao, C., & Kwak, K. (2010). Joint sensing time and power allocation in cooperatively cognitive networks. IEEE Communications Letters, 14(2), 163.CrossRefGoogle Scholar
  9. 9.
    Fan, R., & Jiang, H. (2010). Optimal multi-channel cooperative sensing in cognitive radio networks. IEEE transactions on Wireless Communications, 9(3), 1128–1138.CrossRefGoogle Scholar
  10. 10.
    Paysarvi-Hoseini, P., & Beaulieu, N. C. (2011). Optimal wideband spectrum sensing framework for cognitive radio systems. IEEE Transactions on Signal Processing, 59(3), 1170–1182.MathSciNetCrossRefzbMATHGoogle Scholar
  11. 11.
    Scutari, G., & Pang, J.-S. (2013). Joint sensing and power allocation in nonconvex cognitive radio games: Nash equilibria and distributed algorithms. IEEE Transactions on Information Theory, 59(7), 4626–4661.MathSciNetCrossRefzbMATHGoogle Scholar
  12. 12.
    Quan, Z., Cui, S., Sayed, A. H., & Poor, H. V. (2009). Optimal multiband joint detection for spectrum sensing in cognitive radio networks. IEEE Transactions on Signal Processing, 57(3), 1128–1140.MathSciNetCrossRefzbMATHGoogle Scholar
  13. 13.
    Fan, R., Jiang, H., Guo, Q., & Zhang, Z. (2011). Joint optimal cooperative sensing and resource allocation in multichannel cognitive radio networks. IEEE Transactions on Vehicular Technology, 60(2), 722–729.CrossRefGoogle Scholar
  14. 14.
    Pei, Y., Liang, Y. C., Teh, K. C., & Li, K. H. (2009). How much time is needed for wideband spectrum sensing? IEEE Transactions on Wireless Communications, 8(11), 5466.CrossRefGoogle Scholar
  15. 15.
    Stotas, S., & Nallanathan, A. (2011). Optimal sensing time and power allocation in multiband cognitive radio networks. IEEE Transactions on Communications, 59(1), 226–235.CrossRefGoogle Scholar
  16. 16.
    Hu, H., Zhang, H., & Yu, H. (2014). Throughput-delay trade-off for cognitive radio networks: A convex optimization perspective. Paper presented at the abstract and applied analysis.Google Scholar
  17. 17.
    Yu, H., Tang, W., & Li, S. (2014). Joint optimal sensing time and power allocation for multi-channel cognitive radio networks considering sensing-channel selection. Science China Information Sciences, 57(4), 1–8.  https://doi.org/10.1007/s11432-013-4813-x.CrossRefGoogle Scholar
  18. 18.
    Hamza, D., & Aïssa, S. (2014). Enhanced primary and secondary performance through cognitive relaying and leveraging primary feedback. IEEE Transactions on Vehicular Technology, 63(5), 2236–2247.CrossRefGoogle Scholar
  19. 19.
    Xie, S., Liu, Y., Zhang, Y., & Yu, R. (2010). A parallel cooperative spectrum sensing in cognitive radio networks. IEEE Transactions on Vehicular Technology, 59(8), 4079–4092.CrossRefGoogle Scholar
  20. 20.
    Moghimi, F., Mallik, R. K., & Schober, R. (2012). Sensing time and power optimization in MIMO cognitive radio networks. IEEE Transactions on Wireless Communications, 11(9), 3398–3408.CrossRefGoogle Scholar
  21. 21.
    Liu, X., & Tan, X. (2014). Optimization algorithm of periodical cooperative spectrum sensing in cognitive radio. International Journal of Communication Systems, 27(5), 705–720.CrossRefGoogle Scholar
  22. 22.
    Liu, X., Jia, M., Na, Z., Lu, W., & Li, F. (2018). Multi-modal cooperative spectrum sensing based on Dempster–Shafer fusion in 5G-based cognitive radio. IEEE Access, 6, 199–208.CrossRefGoogle Scholar
  23. 23.
    Chengyu, W., Chen, H., & Lingge, J. (2013). Spectrum handoff scheme based on recommended channel sensing sequence. China Communications, 10(8), 18–26.CrossRefGoogle Scholar
  24. 24.
    Liu, X., Li, F., & Lu, W. (2016). A novel spectrum handoff-based sensing-throughput tradeoff scheme in cognitive radio. China Communications, 13(12), 59–68.CrossRefGoogle Scholar
  25. 25.
    Elmahdy, A. M., El-Keyi, A., ElBatt, T., & Seddik, K. G. (2017). Optimizing cooperative cognitive radio networks performance with primary QoS provisioning. IEEE Transactions on Communications, 65(4), 1451–1463.CrossRefGoogle Scholar
  26. 26.
    Ewaisha, A. E., & Tepedelenlioğlu, C. (2016). Throughput optimization in multichannel cognitive radios with hard-deadline constraints. IEEE Transactions on Vehicular Technology, 65(4), 2355–2368.CrossRefGoogle Scholar
  27. 27.
    Peh, E., & Liang, Y.-C. (2007). Optimization for cooperative sensing in cognitive radio networks. Paper presented at the wireless communications and networking conference, 2007. WCNC 2007. IEEE.Google Scholar
  28. 28.
    Maleki, S., Pandharipande, A., & Leus, G. (2011). Energy-efficient distributed spectrum sensing for cognitive sensor networks. IEEE Sensors Journal, 11(3), 565–573.CrossRefGoogle Scholar
  29. 29.
    Najimi, M., Ebrahimzadeh, A., Andargoli, S. M. H., & Fallahi, A. (2013). A novel sensing nodes and decision node selection method for energy efficiency of cooperative spectrum sensing in cognitive sensor networks. IEEE Sensors Journal, 13(5), 1610–1621.CrossRefGoogle Scholar
  30. 30.
    Eryigit, S., Bayhan, S., & Tugcu, T. (2013). Energy-efficient multichannel cooperative sensing scheduling with heterogeneous channel conditions for cognitive radio networks. IEEE Transactions on Vehicular Technology, 62(6), 2690–2699.CrossRefGoogle Scholar
  31. 31.
    Monemian, M., & Mahdavi, M. (2014). Analysis of a new energy-based sensor selection method for cooperative spectrum sensing in cognitive radio networks. IEEE Sensors Journal, 14(9), 3021–3032.CrossRefGoogle Scholar
  32. 32.
    Maleki, S., Leus, G., Chatzinotas, S., & Ottersten, B. (2015). To AND or To OR: on energy-efficient distributed spectrum sensing with combined censoring and sleeping. IEEE Transactions on Wireless Communications, 14(8), 4508–4521.CrossRefGoogle Scholar
  33. 33.
    Ebrahimzadeh, A., Najimi, M., Andargoli, S. M. H., & Fallahi, A. (2015). Sensor selection and optimal energy detection threshold for efficient cooperative spectrum sensing. IEEE Transactions on Vehicular Technology, 64(4), 1565–1577.CrossRefGoogle Scholar
  34. 34.
    Xu, X., Bao, J., Cao, H., Yao, Y.-D., & Hu, S. (2016). Energy-efficiency-based optimal relay selection scheme with a BER constraint in cooperative cognitive radio networks. IEEE Transactions on Vehicular Technology, 65(1), 191–203.CrossRefGoogle Scholar
  35. 35.
    Monemian, M., Mahdavi, M., & Omidi, M. J. (2016). Optimum sensor selection based on energy constraints in cooperative spectrum sensing for cognitive radio sensor networks. IEEE Sensors Journal, 16(6), 1829–1841.CrossRefGoogle Scholar
  36. 36.
    Hojjati, S. H., Ebrahimzadeh, A., Andargoli, S. M. H., & Najimi, M. (2017). Energy efficient cooperative spectrum sensing in wireless multi-antenna sensor network. Wireless Networks, 23(2), 567–578.CrossRefGoogle Scholar
  37. 37.
    Zheng, M., Chen, L., Liang, W., Yu, H., & Wu, J. (2017). Energy-efficiency maximization for cooperative spectrum sensing in cognitive sensor networks. IEEE Transactions on Green Communications and Networking, 1(1), 29–39.CrossRefGoogle Scholar
  38. 38.
    Boyd, S., & Vandenberghe, L. (2004). Convex optimization. Cambridge: Cambridge University Press.CrossRefzbMATHGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Department of Electrical and Computer EngineeringUniversity of BirjandBirjandIran
  2. 2.The Faculty of ElectricalUniversity of Science and Technology of Mazandaran (USTM)BehshahrIran

Personalised recommendations