Advertisement

Wireless Networks

, Volume 25, Issue 4, pp 2041–2064 | Cite as

Next generation wireless cellular networks: ultra-dense multi-tier and multi-cell cooperation perspective

  • Baha Uddin KaziEmail author
  • Gabriel A. Wainer
Article

Abstract

The next generation wireless cellular network is aimed to address the demands of users and emerging use cases set by industries and academia for beyond 2020. Hence, The next generation 5G networks need to achieve very high data rates, ultra-high reliability, extremely low latency, energy efficiency and fully connected coverage. To meet these demands, ultra-dense networks (UDN) or ultra-dense heterogeneous networks (UDHetNet), millimeter wave (mmWave) and multicell cooperation such as coordinated multipoint (CoMP) are the three leading technology enablers. In this paper, we have made an extensive survey of the current literature on 5G wireless communication focusing on UDN, mmWave and CoMP cooperation. We first discuss the architecture and key technology enablers to achieve the goals of the 5G system. Subsequently, we make an in-depth survey of underlying novel ultra-dense heterogeneous networks, mmWave and multicell cooperation. Moreover, we summarize and compare some of the current achievements and research findings for UDHetNet, mmWave and CoMP. Finally, we discuss the major research challenges and open issues in this active area of research.

Keywords

Cellular networks 5G networks Ultra-dense networks (UDN) Millimeter Wave (mmWave) Coordinated multipoint (CoMP) 

References

  1. 1.
    Ericsson, “Ericsson Mobility Report”. 2016. [Online]. Available http://www.ericsson.com/res/docs/2015/mobility-report/ericsson-mobility-report-nov-2015.pdf. Accessed 26 March 2016.
  2. 2.
    Peng, M., Li, Y., Zhao, Z., & Wang, C. (2015). System architecture and key technologies for 5G heterogeneous cloud radio access networks. IEEE Network, 29(2), 6–14.CrossRefGoogle Scholar
  3. 3.
    Wang, C.-X., Haider, F., Gao, X., You, X.-H., Yang, Y., Yuan, D., et al. (2014). Cellular architecture and key technologies for 5G wireless communication networks. IEEE Communications Magazine, 52(2), 122–130.CrossRefGoogle Scholar
  4. 4.
    Alsharif, M. H., & Nordin, R. (2016). Evolution towards fifth generation (5G) wireless networks: Current trends and challenges in the deployment of millimetre wave, massive MIMO, and small cells. Telecommunication Systems, 1–21.Google Scholar
  5. 5.
    Hossain, E., Rasti, M., Tabassum, H., & Abdelnasser, A. (2014). Evolution toward 5G multi-tier cellular wireless networks: An interference management perspective. IEEE Wireless Communications, 118–127.Google Scholar
  6. 6.
    Agyapong, P. K., Mikio, I., Dirk, S., Wolfgang, K., & Anass, B. (2014). Design considerations for a 5G network architecture. IEEE Communications Magazine, 52(11), 65–75.CrossRefGoogle Scholar
  7. 7.
    Rakon, “Small Cells Solutions,” 2015. [Online]. Available http://www.rakon.com/products/technical-resources/tech-docs. Accessed 15 August 2017.
  8. 8.
    Qualcomm, “1000x Data Challenge,”. 2014. [Online]. Available https://www.qualcomm.com/invention/1000x/tools. Accessed 15 August 2017.
  9. 9.
    Ding, M., & Luo, H. (2013). Multi-point cooperative communication systems: Theory and applications. Shanghai: Shanghai Jiao Tong University Press.CrossRefGoogle Scholar
  10. 10.
    3GPP, “3GPP TR 36.819 version 11.2.0: Coordinated multi-point operation for LTE physical layer aspects,” 09 2013. [Online]. Available http://www.3gpp.org/DynaReport/36-series.htm. Accessed September 2016.
  11. 11.
    Jaber, M., Muhammad, A. I., Rahim, T., & Anvar, T. (2016). 5G backhaul challenges and emerging research directions: A survey. IEEE Access, 4, 1743–1766.CrossRefGoogle Scholar
  12. 12.
    Andrews, J. G., Xinchen, Z., Gregory, D. D., & Abhishek, K. G. (2016). Are we approaching the fundamental limits of wireless network densification? IEEE Communications Magazine, 54(10), 184–190.CrossRefGoogle Scholar
  13. 13.
    Özbek, B., & Ruyet, D. L. (2014). “Feedback strategies for multicell systems” in feedback strategies for wireless communication (pp. 249–293). New York, NY: Springer.CrossRefzbMATHGoogle Scholar
  14. 14.
    Chen, S., Tianyu, Z., Hsiao-Hwa, C., Lu, Z., & Weixiao, M. (2017). Performance analysis of downlink coordinated multipoint joint transmission in ultra-dense networks. IEEE Network, 99, 12–20.Google Scholar
  15. 15.
    Marotta, A., K. K., G. F., C. D., A. C., V. L., & C. P. (2017). Impact of CoMP VNF placement on 5G Coordinated Scheduling performance. In 2017 European conference on networks and communications (EuCNC), Oulu, Finland, 2017.Google Scholar
  16. 16.
    Gupta, A., & Jha, R. K. (2015). A survey of 5G network: Architecture and emerging technologies. IEEE Access, 3, 1206–1232.CrossRefGoogle Scholar
  17. 17.
    GSMA Intelligence, “Understanding 5G: Perspectives on future technological advancements in mobile,” December 2014.Google Scholar
  18. 18.
    Ericsson, “5G systems,” January 2017. [Online]. Available https://www.ericsson.com/assets/local/publications/white-papers/wp-5g-systems.pdf. Accessed 12 August 2017.
  19. 19.
    Bassoy, S., Hasan, F., Muhammad, I. A., & Ali, I. (2017). Coordinated multi-point clustering schemes: a survey. IEEE Communications Surveys & Tutorials, 19(2), 743–764.CrossRefGoogle Scholar
  20. 20.
    Liu, M., Yinglei, T., & Meng, S. (2017). Effects of outdated CSI on the coverage of CoMP-based ultra-dense networks. In IEEE 18th international workshop on signal processing advances in wireless communications (SPAWC), Sapporo, Japan, 2017.Google Scholar
  21. 21.
    Rappaport, T. S., Yunchou, X., George, R. M., Andreas, F. M., Evangelos, M., & Jianhua, Z. (2017). Overview of millimeter wave communications for fifth-generation (5G) wireless networks—with a focus on propagation models. IEEE Transactions on Antennas and Propagation, 65(12), 6213–6230.CrossRefGoogle Scholar
  22. 22.
    Xiao, M., Shahid, M., Yongming, H., Linglong, D., Yonghui, L., Michail, M., et al. (2017). Millimeter wave communications for future mobile networks. IEEE Journal on Selected Areas in Communications, 35(9), 1909–1935.CrossRefGoogle Scholar
  23. 23.
    Gotsis, A., Stelios, S., & Angeliki, A. (2016). UltraDense networks: The new wireless frontier for enabling 5G access. IEEE Vehicular Technology Magazine, 11(2), 71–78.CrossRefGoogle Scholar
  24. 24.
    Kamel, M., Walaa, H., & Amr, Y. (2016). Ultra-dense networks: A survey. IEEE Communications Surveys & Tutorials, 18(4), 2522–2545.CrossRefGoogle Scholar
  25. 25.
    Yu, W., Hansong, X., Hanlin, Z., David, G., & Nada, G. (2016). “Ultra-dense networks: Survey of state of the art and future directions. In 25th international conference on computer communication and networks (ICCCN), IEEE, Waikoloa, HI, USA, 2016.Google Scholar
  26. 26.
    Zhang, H., Site, H., Chunxiao, J., Keping, L., Victor, L. C. M., & Vincent, P. H. (2017). Energy efficient user association and power allocation in millimeter-wave-based ultra dense networks with energy harvesting base stations. IEEE Journal on Selected Areas in Communications, 35(9), 1936–1947.CrossRefGoogle Scholar
  27. 27.
    Björnson, E., Luca, S., Jakob, H., & Mérouane, D. (2015). Optimal design of energy-efficient multi-user MIMO systems: Is massive MIMO the answer? IEEE Transactions on Wireless Communications, 14(6), 3059–3075.CrossRefGoogle Scholar
  28. 28.
    Larsson, E. G., Ove, E., Fredrik, T., & Thomas, M. L. (2014). Massive MIMO for next generation wireless systems. IEEE Communications Magazine, 52(2), 186–195.CrossRefGoogle Scholar
  29. 29.
    Mushtaq, M. T., Hassan, S. A., Saleem, S., & Jayakody, D. N. K. (2017). Impacts of K-fading on the performance of massive MIMO systems. IET Electronics Letters, 54(1), 49–51.CrossRefGoogle Scholar
  30. 30.
    Liu, M., Yinglei, T., & Mei, S. (2015). Performance analysis of coordinated multipoint joint transmission in ultra-dense networks with limited backhaul capacity. IET Electronics Letters, 51(25), 2111–2113.CrossRefGoogle Scholar
  31. 31.
    Garcia, V., Yiqing, Z., & Jinglin, S. (2014). Coordinated multipoint transmission in dense cellular networks with user-centric adaptive clustering. IEEE Transactions on Wireless Communications, 13(8), 4297–4308.CrossRefGoogle Scholar
  32. 32.
    Qureshi, S., Hassan, S. A., & Jayakody, D. N. K. (2017). Divide and allocate: An uplink successive bandwidth division NOMA system. Transactions on Emerging Telecommunications Technologies, 29(1).Google Scholar
  33. 33.
    Saito, Y., Yoshihisa, K., Anass, B., Takehiro, N., Anxin, L., & Kenichi, H. (2013). Non-orthogonal multiple access (NOMA) for cellular future radio access. In Vehicular technology conference (VTC Spring), 2013 IEEE 77th, Dresden, Germany, 2013.Google Scholar
  34. 34.
    Hossain, E., & Monowar, H. (2015). 5G cellular: Key enabling technologies and research challenges. IEEE Instrumentation and Measurement Magazine, 18(3), 11–21.CrossRefGoogle Scholar
  35. 35.
    Perera, T. D. P., Dushantha Nalin, K. J., Shree, S. K., Symeon, C., & Jun, L. (2017). Simultaneous Wireless Information and Power Transfer (SWIPT): Recent advances and future challenges. IEEE Communications Surveys & Tutorials, vol. pp, no. 99, 2017.Google Scholar
  36. 36.
    Abdelwahab, S., Bechir, H., Mohsen, G., & Taieb, Z. (2016). Network function virtualization in 5G. IEEE Communications Magazine, 54(4), 84–91.CrossRefGoogle Scholar
  37. 37.
    Martínez, R., Arturo, M., Ricard, V., Ramon, C., Raül, M., Stephan, P., et al. (2017). Integrated SDN/NFV orchestration for the dynamic deployment of mobile virtual backhaul networks over a multilayer (packet/optical) aggregation infrastructure. Journal of Optical Communications and Networking, 9(2), 135–142.CrossRefGoogle Scholar
  38. 38.
    Checko, A., Henrik, C. L., Ying, Y., Lara, S., Georgios, K., Michael, B. S., et al. (2015). Cloud RAN for mobile networks—a technology overview. IEEE Communications Surveys & Tutorials, 17(1), 405–426.CrossRefGoogle Scholar
  39. 39.
    Rodriguez, V. Q., & Fabrice, G. (2017). Towards the deployment of a fully centralized Cloud-RAN architecture. In IEEE international wireless communications and mobile computing conference (IWCMC), Valencia, Spain, 2017.Google Scholar
  40. 40.
    Taleb, T., Badr, M., Marius-Iulian, C., Akihiro, N., & Flinck, H. (2017). PERMIT: Network slicing for personalized 5G mobile telecommunications. IEEE Communications Magazine, 55(5), 88–93.CrossRefGoogle Scholar
  41. 41.
    Rost, P., Mannweiler, C., Michalopoulos, D., Sartori, C., Sciancalepore, V., Sastry, N., et al. (2017). Network slicing to enable scalability and flexibility in 5G mobile networks. IEEE Communications Magazine, 55(5), 72–79.CrossRefGoogle Scholar
  42. 42.
    3GPP, “3GPP TS 38.300 V15.0.0 NR; NR and NG-RAN Overall Description; stage-2; Release-15,” 2018. [Online]. Available http://www.3gpp.org/DynaReport/38-series.htm. Accessed 3 2018.
  43. 43.
    3GPP, “3GPP TS23.501 V15.1.0: System Architecture for the 5G System (Release 15),” March 2018. [Online]. Available http://www.3gpp.org/DynaReport/23-series.htm. Accessed April 2018.
  44. 44.
    3GPP, “3GPP TS32.500 V14.0.0: Telecommunication management; Self-Organizing Networks (SON); Concepts and requirements,” April 2017. [Online]. Available http://www.3gpp.org/DynaReport/32-series.htm. Accessed April 2018.
  45. 45.
    Ramirez-Perez, C., & Victor, R. (2016). SDN meets SDR in self-organizing networks: Fitting the pieces of network management. IEEE Communications Magazine, 54(1), 48–57.CrossRefGoogle Scholar
  46. 46.
    Wainio, P., & Seppänen, K. (2016). Self-optimizing last-mile backhaul network for 5G small cells. In IEEE international conference on communications workshops (ICC), Kuala Lumpur, Malaysia, 2016.Google Scholar
  47. 47.
    3GPP, “3GPP TS32.501 V14.0.0: Telecommunication management; Self-configuration of network elements; Concepts and requirements,” April 2017. [Online]. Available http://www.3gpp.org/DynaReport/32-series.htm. Accessed March 2018.
  48. 48.
    3GPP, “3GPP TS32.541 V14.0.0: Telecommunication management; Self-Organizing Networks (SON); Self-healing concepts and requirements (Release 14),” April 2017. [Online]. Available http://www.3gpp.org/DynaReport/32-series.htm. Accessed April 2018.
  49. 49.
    3GPP, “An Interview with Philippe Reininger—RAN3 Chairman,” May 2015. [Online]. Available http://www.3gpp.org/news-events/3gpp-news/1684-ran4. Accessed March 2018.
  50. 50.
    Cavaliere, F., Paola, I., Josep, M.-B., Jorge, B., José, N.-M., Kun-Yi, L., et al. (2017). Towards a unified fronthaul-backhaul data plane for 5G The 5G-Crosshaul project approach. Computer Standards & Interfaces, 51, 56–62.CrossRefGoogle Scholar
  51. 51.
    Wang, N., Ekram, H., & Vijay, B. (2015). K., “Backhauling 5G small cells: A radio resource management perspective,”. IEEE Wireless Communications, 22(5), 41–49.CrossRefGoogle Scholar
  52. 52.
    Siddique, U., Hina, T., Ekram, H., & Dong, I. K. (2015). Wireless backhauling of 5G small cells: challenges and solution approaches. IEEE Wireless Communications, 22(5), 22–31.CrossRefGoogle Scholar
  53. 53.
    ETSI, “Microwave and Millimetre-wave for 5G Transport,” February 2018. [Online]. Available http://www.etsi.org/technologies-clusters/white-papers-and-brochures/etsi-white-papers. Accessed April 2018.
  54. 54.
    Ge, X., Tu, S., Mao, G., Wang, C.-X., & Han, T. (2016). 5G ultra-dense cellular networks. Ge, Xiaohu, Song Tu, Guoqiang Mao, Cheng-Xiang Wang, and IEEE Wireless Communications, 23(1), 72–79.Google Scholar
  55. 55.
    Galinina, O., Pyattaev, A., Andreev, S., Dohler, M., & Koucheryavy, Y. (2015). 5G multi-RAT LTE-WiFi ultra-dense small cells: Performance dynamics, architecture, and trends. IEEE Journal on Selected Areas in Communications, 33(6), 1224–1240.CrossRefGoogle Scholar
  56. 56.
    López-Pérez, D., Ming, D., Holger, C., & Amir, H. J. (2015). Towards 1 Gbps/UE in cellular systems: Understanding ultra-dense small cell deployments. IEEE Communications Surveys & Tutorials, 17(4), 2078–2101.CrossRefGoogle Scholar
  57. 57.
    Ding, M., David, L. P., & Guoqiang, M. (2017). “A new capacity scaling law in ultra-dense networks,” in arXiv preprint arXiv:1704.00399, 2017.
  58. 58.
    Ding, M., David, L.-P., Guoqiang, M., Peng, W., & Zihuai, L. (2015). Will the area spectral efficiency monotonically grow as small cells go dense. In Global communications conference (GLOBECOM), 2015 IEEE, San Diego, USA, 2015.Google Scholar
  59. 59.
    Ghosh, J., Jayakody, D. N. K., & Tsiftsis, A. T. (2017). Coverage probability analysis by fractional frequency reuse scheme. In 1st International telecommunications conference ITELCON 2017 (Springer Lecture Notes in Electrical Engineering), Istanbul, Turkey, 2017.Google Scholar
  60. 60.
    Kela, P., Jussi, T., & Costa, M. (2015). Borderless mobility in 5G outdoor ultra-dense networks. IEEE Access, 3, 1462–1476.CrossRefGoogle Scholar
  61. 61.
    Zhang, J., Jian, F., Chang, L., Xuefen, H., Xing, Z., & Wang, W. (2015). Mobility enhancement and performance evaluation for 5G Ultra dense Networks. In Wireless communications and networking conference (WCNC), 2015 IEEE, New Orleans, LA, USA, 2015.Google Scholar
  62. 62.
    Wang, H., Shanzhi, C., Ai, M., & Hui, X. U. (2017). Localized mobility management for 5G ultra dense network. IEEE Transactions on Vehicular Technology, no. 99, 2017.Google Scholar
  63. 63.
    Kazi, B. U., & Gabriel, W. (2017). Handover enhancement for LTE-advanced and beyond heterogeneous cellular networks. In International symposium on performance evaluation of computer and telecommunication systems (SPECTS), Seattle, WA, USA, 2017.Google Scholar
  64. 64.
    Kazi, B. U., & Gabriel, W. (2018). Handover oscillation reduction in ultra-dense heterogeneous cellular networks using enhanced handover approach. In Proceedings of the communications and networking symposium, society for computer simulation international, Baltimore, Maryland, USA, 2018.Google Scholar
  65. 65.
    Romanous, B., Bitar, N., Imran, A., & Refai, H. (2015). Network densification: Challenges and opportunities in enabling 5G. In IEEE 20th international workshop on in computer aided modelling and design of communication links and networks (CAMAD), Guildford, UK, 2015.Google Scholar
  66. 66.
    Gao, M., Li, J., Jayakody, D. N., Chen, H., Li, Y., & Shi, J. (2017). A super base station network architecture for ultra-dense networks. IEEE Communications Magazine, 2017.Google Scholar
  67. 67.
    Gao, Z., Linglong, D., De, M., Zhaocheng, W., Muhammad, A. I., & Muhammad, Z. S. (2015). MmWave massive-MIMO-based wireless backhaul for the 5G ultra-dense network. IEEE Wireless Communications, 22(5), 13–21.CrossRefGoogle Scholar
  68. 68.
    Finn, D., Hamed, A., Andrea, C., & Luiz, D. A. (2014). Multi-user MIMO across small cells. In IEEE international conference on communications (ICC), Sydney, NSW, Australia, 2014.Google Scholar
  69. 69.
    Finn, D., Hamed, A., Andrea, C. F., & Luiz, D. A. (2016). Improved spectral efficiency through multiuser MIMO across small cells. IEEE Transactions on Vehicular Technology, 65(9), 7764–7768.CrossRefGoogle Scholar
  70. 70.
    Gotsis, A. G., & Athanasios, D. P. (2017). On user association and multiple access optimisation in 5G massive MIMO empowered ultra dense networks. Transactions on Emerging Telecommunications Technologies, 28(4).Google Scholar
  71. 71.
    Alvarez, P., Carlo, G., Jonathan van de, B., Danny, F., Hamed, A., & Luiz, D. (2016). Simulating dense small cell networks. In IEEE wireless communications and networking conference (WCNC), Doha, Qatar, 2016.Google Scholar
  72. 72.
    Wainer, G., Mohammad, E., & Baha Uddin, K. (2017). Modeling coordinated multipoint with a dynamic coordination station in LTE-A mobile networks. In IEEE 14th international conference on networking, sensing and control (ICNSC), Calabria, Italy, 2017.Google Scholar
  73. 73.
    Zhao, X., Shu, L., Qi, W., Mengjun, W., Shaohui, S., & Wei, H. (2017). Channel measurements, modeling, simulation and validation at 32 GHz in outdoor microcells for 5G radio systems. IEEE Access, 5, 1062–1072.CrossRefGoogle Scholar
  74. 74.
    Sun, S., George, R. M., & Theodore, S. R. (2017). A novel millimeter-wave channel simulator and applications for 5G wireless communications. In IEEE International Conference on Communications (ICC), Paris, France, 2017.Google Scholar
  75. 75.
    Lopez-Perez, D., Guvenc, I., Roche, G. D. L., Kountouris, M., Quek, T. Q. S., & Zhang, J. (2011). Enhanced intercell interference coordination challenges in heterogeneous networks. IEEE Wireless Communications, 18(3), 22–30.CrossRefGoogle Scholar
  76. 76.
    Damnjanovic, A., Juan, M., Yongbin, W., Tingfang, J., Tao, L., Madhavan, V., et al. (2011). A survey on 3GPP heterogeneous networks. IEEE Wireless Communications, 18(3), 10–21.CrossRefGoogle Scholar
  77. 77.
    Al-Rubaye, S., Anwer, A.-D., & Cosmas, J. (2011). Cognitive femtocell. IEEE Vehicular Technology Magazine, 6(1), 44–51.CrossRefGoogle Scholar
  78. 78.
    Wang, W., Guanding, Y., & Aiping, H. (2013). Cognitive radio enhanced interference coordination for femtocell networks. IEEE Communications Magazine, 51(6), 37–43.CrossRefGoogle Scholar
  79. 79.
    Ghosh, J., & Jayakody, D. N. K. (2017). Cognitive-Femtocell based resource allocation in macrocell network. In IEEE 28th annual international symposium on personal, indoor, and mobile radio communications (PIMRC), Montreal, Canada, 2017.Google Scholar
  80. 80.
    Bokor, L., Faigl, Z., & Imre, S. (2011). Flat architectures: Towards scalable future internet mobility. The Future Internet, Springer, pp. 35–50, 2011.Google Scholar
  81. 81.
    Nokia, “Ultra Dense Network (UDN),” (2016). [Online]. Available https://resources.ext.nokia.com/asset/200295. Accessed 4 August 2017.
  82. 82.
    Chen, S., Qin, F., Hu, B., Li, X., & Liu, J. (2017). Ultra-dense network architecture and technologies for 5G. In 5G mobile communications, pp. 403–429. Springer International Publishing.Google Scholar
  83. 83.
    Liu, J., Min, S., Lei, L., & Jiandong, L. (2017). Interference management in ultra-dense networks: Challenges and approaches. IEEE Network, 31(6), 70–77.CrossRefGoogle Scholar
  84. 84.
    Cao, J., Tao, P., Zhiqiang, Q., Ran, D., Yannan, Y., & Wenbo, W. (2018). Interference management in ultra-dense networks: A user-centric coalition formation game approach. IEEE Transactions on Vehicular Technology.Google Scholar
  85. 85.
    Singh, R., Bai, Q., O’Farrell, T., Ford, K. L., & Langley, R. J. (2016). Demonstration of RF digitising concurrent dual-band receiver for carrier aggregation over TV white spaces. In Vehicular technology conference (VTC-Fall), 2016 IEEE 84th, Montreal, QC, Canada, 2016.Google Scholar
  86. 86.
    O’Farrell, T., Singh, R., Bai, Q., Ford, K. L., Langley, R., Beach, M., Arabi, E., Gamlath, C., & Morris, K. A. (2017). Tunable, concurrent multiband, single chain radio architecture for low energy 5G-RANs. In Modeling and optimization in mobile, ad hoc, and wireless networks (WiOpt), 2017 15th international symposium on, Paris, France, 2017.Google Scholar
  87. 87.
    3GPP, “3GPP TR 36.842 V12.0: Study on Small Cell enhancements for E-UTRA and E-UTRAN; Higher layer aspects,” December 2013. [Online]. Available http://www.3gpp.org/DynaReport/36-series.htm. Accessed July 2016.
  88. 88.
    Kuo, P.-H., & Alain, M. (2018). User-centric multi-RATs coordination for 5G heterogeneous ultra-dense networks. IEEE Wireless Communications, 25(1), 6–8.CrossRefGoogle Scholar
  89. 89.
    SCF, “Backhaul Technologies for Small Cells,” February 2013. [Online]. Available https://www.smallcellforum.org/. Accessed January 2018.
  90. 90.
    Rappaport, T. S., Shu, S., Rimma, M., Hang, Z., Yaniv, A., Kevin, W., et al. (2013). Millimeter wave mobile communications for 5G cellular: It will work. IEEE access, 1, 335–349.CrossRefGoogle Scholar
  91. 91.
    Ericsson, “Ericsson Microwave Outlook: Treands and needs in the microwave industry,” December 2017. [Online]. Available https://www.ericsson.com/assets/local/microwave-outlook/documents/ericsson-microwave-outlook-report-2017.pdf. Accessed March 2018.
  92. 92.
    Dehos, C., Jose, L. G., Antonio, D. D., Dimitri, K., & Laurent, D. (2014). Millimeter-wave access and backhauling: The solution to the exponential data traffic increase in 5G mobile communications systems? IEEE Communications Magazine, 52(9), 88–95.CrossRefGoogle Scholar
  93. 93.
    Sun, S., Theodore, S. R., Sundeep, R., Timothy, A. T., Amitava, G., Istvan Z. K., Ignacio, R., Ozge, K., Andrzej, P., & Jan, J. (2016). Propagation path loss models for 5G urban micro-and macro-cellular scenarios. In IEEE 83rd vehicular technology conference (VTC Spring), Nanjing, China, 2016.Google Scholar
  94. 94.
    3GPP, “3GPP TR 38.900 V14.3.1: Study on channel model for frequency spectrum above 6 GHz,” July 2017. [Online]. Available http://www.3gpp.org/DynaReport/38-series.htm. Accessed March 2018.
  95. 95.
    3GPP, “3GPP TR 38.901 V14.3.0: Study on channel model for frequencies from 0.5 to 100 GHz,” January 2018. [Online]. Available http://www.3gpp.org/DynaReport/38-series.htm. [Accessed March 2018].
  96. 96.
    Akdeniz, M. R., Yuanpeng, L., Mathew, S. K., Shu, S., Sundeep, R., Theodore, R. S., et al. (2014). Millimeter wave channel modeling and cellular capacity evaluation. IEEE Journal on Selected Areas in Communications, 32(6), 1164–1179.CrossRefGoogle Scholar
  97. 97.
    Rangan, S., Theodore, R. S., & Elza, E. (2014). Millimeter-wave cellular wireless networks: Potentials and challenges. Proceedings of the IEEE, 102(3), 366–385.CrossRefGoogle Scholar
  98. 98.
    Zhang, X., & Zhou, X. (2012). LTE-advanced air interface technology. Boca Raton: CRC Press.Google Scholar
  99. 99.
    Zhou, Y., Liu, L., Du, H., Tian, L., Wang X., & Shi, J. (2014). An overview on intercell interference management in mobile cellular networks: From 2G to 5G. In Communication systems (ICCS), 2014 IEEE international conference on, Macau, China, 2014.Google Scholar
  100. 100.
    Liu, M., Yinglei, T., & Mei, S. (2016). Performance analysis of CoMP in ultra-dense networks with limited backhaul capacity. Wireless Personal Communications, 91(1), 51–77.CrossRefGoogle Scholar
  101. 101.
    3GPP, “3GPP TR 36.741 V14: Study on further enhancements to Coordinated Multi-Point (CoMP) operation for LTE,” 23 March 2017. [Online]. Available http://www.3gpp.org/DynaReport/36-series.htm. Accessed 18 August 2017.
  102. 102.
    3GPP, “3GPP TS 36.300 V14: Evolved Universal Terrestrial Radio Access (E-UTRA) and Evolved Universal Terrestrial Radio Access Network (E-UTRAN); Overall description; Stage 2,” September 2016. [Online]. Available http://www.3gpp.org/DynaReport/36-series.htm. Accessed October 2016.
  103. 103.
    3GPP, “3GPP TS 36.331 Release 14: Radio Resource Control (RRC) protocol specification,” 26 September 2017. [Online]. Available http://www.3gpp.org/DynaReport/36-series.htm. Accessed July 2017.
  104. 104.
    Papadogiannis, A., Hardouin, E., & Gesbert, D. (2009). Decentralising multicell cooperative processing: A novel robust framework. EURASIP Journal onWireless Communications and Networking.Google Scholar
  105. 105.
    Akyildiz, I. F., Gutierrez-Estevez, D. M., & Reyes, E. C. (2010). The evolution to 4G cellular systems: LTE-advanced. Physical Communication, 3, 217–244.CrossRefGoogle Scholar
  106. 106.
    Papadogiannis, A., Bang, H., Gesbert, D., & Hardouin, E. (2011). Efficient selective feedback design for multicell cooperative networks. IEEE Transactions on Vehicular Technology, 60(1), 196–205.CrossRefGoogle Scholar
  107. 107.
    Kazi, B. U., Etemad, M., Wainer, G., & Boudreau, G. (2016). Signaling overhead and feedback delay reduction in heterogeneous multicell cooperative networks. In International symposium on performance evaluation of computer and telecommunication systems, Montreal, Canada, 2016.Google Scholar
  108. 108.
    Kazi, B. U., Etemad, M., Wainer, G., & Boudreau, G. (2016). Using elected coordination stations for CSI feedback on CoMP downlink transmissions. In International symposium on performance evaluation of computer and telecommunication systems, Montreal, Canada, 2016.Google Scholar
  109. 109.
    Akyildiz, I. F., David, G.-E. M., Ravikumar, B., & Chavarria-Reyes, E. (2014). LTE-advanced and the evolution to beyond 4G (B4G) systems. Physical Communication, 10, 31–60.CrossRefGoogle Scholar
  110. 110.
    Sun, S., Gao, Q., Peng, Y., Wang, Y., & Song, L. (2013). Interference management through CoMP in 3GPP LTE-advanced networks. IEEE Wireless Communications, 20(1).Google Scholar
  111. 111.
    Li, Y.-N. R., Li, J., Li, W., Xue, Y., & Wu, H. (2012). CoMP and interference coordination in heterogeneous network for LTE-advanced. In 2012 IEEE globecom workshops, pp. 11071111. IEEE, 2012, California, USA, December, 2012.Google Scholar
  112. 112.
    Zhang, H., Chunxiao, J., Julian, C., & Victor, C. L. (2015). Cooperative interference mitigation and handover management for heterogeneous cloud small cell networks. IEEE Wireless Communications, 22(3), 92–99.CrossRefGoogle Scholar
  113. 113.
    Gotsis, A. G., Stelios, S., & Angeliki, A. (2014). Spatial coordination strategies in future ultra-dense wireless networks. In 11th International symposium on wireless communications systems (ISWCS), Barcelona, Spain.Google Scholar
  114. 114.
    Liu, J., & Weimin, X. (2016). Advanced carrier aggregation techniques for multi-carrier ultra-dense networks. IEEE Communications Magazine, 54(7), 61–67.CrossRefGoogle Scholar
  115. 115.
    Lee, J., Kim, Y., Lee, H., Ng, B. L., Mazzarese, D., Liu, J., Xiao, W., & Zhou, Y. (2012). Coordinated multipoint transmission and reception in LTE-advanced systems. IEEE Communications Magazine.Google Scholar
  116. 116.
    3GPP, “3GPP TS 36.211 version 14.0: Evolved Universal Terrestrial Radio Access (E-UTRA); Physical channels and modulation,” 09 2016. [Online]. Available http://www.3gpp.org/DynaReport/36-series.htm. Accessed February 2016.
  117. 117.
    Nam, Y.-H., Yosuke, A., Younsun, K., Moon-il, L., Kapil, B., & Anthony, E. (2012). Evolution of reference signals for LTE-advanced systems. IEEE Communications Magazine, 50(2), 132–138.CrossRefGoogle Scholar
  118. 118.
    Papadogiannis, A., Hardouin, E., & Gesbert, D. (2009). Decentralising multicell cooperative processing: A novel robust framework. EURASIP Journal on Wireless Communications and Networking, 2009.Google Scholar
  119. 119.
    Bassoy, S., Mona, J., Muhammad, A. I., & Pei, X. (2016). Load aware self-organising user-centric dynamic CoMP clustering for 5G networks. IEEE Access, 4, 2895–2906.CrossRefGoogle Scholar
  120. 120.
    3GPP, “3GPP TS 36.420; X2 general aspects and principles,” March 2017. [Online]. Available http://www.3gpp.org/DynaReport/36-series.htm. Accessed 14 July 2017.
  121. 121.
    Yang, Y., Ki, W. S., Jihong, P., Seong-Lyun, K., & Kwang Soon, K. (2017). Cooperative transmissions in ultra-dense networks under a bounded dual-slope path loss model. arXiv preprint arXiv, 2017.Google Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Department of Systems and Computer EngineeringCarleton UniversityOttawaCanada

Personalised recommendations