Training size optimization with reduced complexity in cell-free massive MIMO system

  • Sayeid M. Sahid Ullah
  • Wan Amirul MahyiddinEmail author
  • Nur Azira Zakaria
  • Tarik Abdul Latef
  • Kamarul Ariffin Noordin
  • Kaharudin Dimyati


Training sequence is used in multiple antenna systems to estimate channel state information and mitigate channel distortion between transmitter and receiver. However, the training sequence or pilot must be limited to a certain size in order to reduce the impact of overhead loss due to limited channel coherence length in mobile users. In this paper, we proposed to use training size optimization in cell-free massive MIMO system. In addition, we proposed and compared the performance of different training size optimization algorithms, namely exhaustive search optimization, bisection optimization and min–max optimization, with each method has different level of calculation complexities. The results showed that in general, all of the 3 training length optimization methods improved the downlink rate compared to the conventional pilot length method. We also showed that the training optimization methods are more effective when the coherence length is small or the number of users is very large. In the case of large number of users or small coherence length, the exhaustive search has the best median downlink rate, followed closely by min–max optimum and finally the bisection method. Even though the exhaustive search optimization has the best downlink rate, we showed that the proposed reduce optimization complexity methods has significantly less calculation complexity. In addition, the median downlink rate performance of min–max optimization method is only slightly less than that of the exhaustive search method for various number of users and coherence length.


Multiple-input multiple output Massive MIMO Channel training 



This work is funded by University Malaya Research Fund Assistance (BKP) (Grand No. BK051-2016).


  1. 1.
    Rusek, F., Persson, D., Lau, B. K., Larsson, E. G., Marzetta, T. L., Edfors, O., et al. (2013). Scaling up MIMO: Opportunities and challenges with very large arrays. IEEE Signal Processing Magazine, 30, 40–60.CrossRefGoogle Scholar
  2. 2.
    Larsson, E. G., Edfors, O., Tufvesson, F., & Marzetta, T. L. (2014). Massive MIMO for next generation wireless systems. IEEE Communications Magazine, 52, 186–195.CrossRefGoogle Scholar
  3. 3.
    Lu, L., Li, G. Y., Swindlehurst, A. L., Ashikhmin, A., & Zhang, R. (2014). An overview of massive MIMO: benefits and challenges. IEEE Journal of Selected Topics in Signal Processing, 8, 742–758.CrossRefGoogle Scholar
  4. 4.
    Ngo, H. Q., Ashikhmin, A., Yang, H., Larsson, E. G., & Marzetta, T. L. (2017). Cell-free massive MIMO versus small cells. IEEE Transactions on Wireless Communications, 16, 1834–1850.CrossRefGoogle Scholar
  5. 5.
    Ngo, H. Q., Ashikhmin, A., Yang, H., Larsson, E. G., & Marzetta, T. L. (2015). Cell-free massive MIMO: Uniformly great service for everyone. In Proceedings of IEEE international workshop signal processing advanced wireless communications (SPAWC), Stockholm, Sweden, pp. 201–205.Google Scholar
  6. 6.
    Heath, R. W., Jr., Wu, T., Kwon, Y. H., & Soong, A. C. K. (2011). Multiuser MIMO in distributed antenna systems with out-of-cell interference. IEEE Transactions on Signal Processing, 59(10), 4885–4899.MathSciNetCrossRefGoogle Scholar
  7. 7.
    Feng, W., Wang, Y., Ge, N., Lu, J., & Zhang, J. (2013). Virtual MIMO in multi-cell distributed antenna systems: Coordinated transmissions with large-scale CSIT. IEEE Journal on Selected Areas in Communications, 31, 2067–2081.CrossRefGoogle Scholar
  8. 8.
    Ma, J., Zhang, S., Li, H., Zhao, N., & Leung, V. C. M. (2018). Interference-alignment and soft-space-reuse based cooperative transmission for multi-cell massive MIMO networks. IEEE Transactions on Wireless Communications, 17(3), 1907–1922.CrossRefGoogle Scholar
  9. 9.
    Ma, J., Zhang, S., Li, H., Zhao, N., & Leung, V. C. M. (2017). Base station selection for massive MIMO networks with two-stage precoding. IEEE Wireless Communications Letters, 6(5), 598–601.CrossRefGoogle Scholar
  10. 10.
    Ma, J., Zhang, S., Li, H., Zhao, N., & Nallanathan, A. (2017). Pattern division for massive MIMO networks with two-stage precoding. IEEE Communications Letters, 21(7), 1665–1668.CrossRefGoogle Scholar
  11. 11.
    Buzzi, S., & D’Andrea, C. (2017). Cell-free massive MIMO: User-centric approach. IEEE Wireless Communications Letters, 6(6), 706–709.CrossRefGoogle Scholar
  12. 12.
    Bashar, M., Cumanan, K., Burr, A. G., Ngo, H. Q., & Debbah, M. (2018). Cell-free massive MIMO with limited backhaul. In Proceeding of IEEE ICC, pp. 1–7.Google Scholar
  13. 13.
    Nguyen, T. H., Nguyen, T. K., Han, H. D., & Nguyen, V. D. Optimal power control and load balancing for uplink cell-free multi-user massive MIMO. In IEEE access, Vol. PP, No. 99, pp. 1–1.Google Scholar
  14. 14.
    Ngo, H. Q., Tran, L. N., Duong, T. Q., Matthaiou, M., & Larsson, E. G. (2018). On the total energy efficiency of cell-free massive MIMO. IEEE Transactions on Green Communications and Networking, 2(1), 25–39.CrossRefGoogle Scholar
  15. 15.
    Nguyen, L. D., Duong, T. Q., Ngo, H. Q., & Tourki, K. (2017). Energy efficiency in cell-free massive MIMO with zero-forcing precoding design. IEEE Communications Letters, 21(8), 1871–1874.CrossRefGoogle Scholar
  16. 16.
    Marzetta, T. L., & Hochwald, B. M. (1999). Capacity of a mobile multiple-antenna communication link in Rayleigh flat fading. IEEE Transactions on Information Theory, 45, 139–157.MathSciNetCrossRefzbMATHGoogle Scholar
  17. 17.
    Marzetta, T. L. (2010). Noncooperative cellular wireless with unlimited numbers of base station antennas. IEEE Transactions on Wireless Communications, 9, 3590–3600.CrossRefGoogle Scholar
  18. 18.
    Jose, J., Ashikhmin, A., Marzetta, T. L., & Vishwanath, S. (2011). Pilot contamination and precoding in multi-cell TDD systems. IEEE Transactions on Wireless Communications, 10, 2640–2651.CrossRefGoogle Scholar
  19. 19.
    Hoydis, J., Ten Brink, S., & Debbah, M. (2013). Massive MIMO in the UL/DL of cellular networks: How many antennas do we need? IEEE Journal on Selected Areas in Communications, 31, 160–171.CrossRefGoogle Scholar
  20. 20.
    Ngo, H. Q., Larsson, E. G., & Marzetta, T. L. (2013). Energy and spectral efficiency of very large multiuser MIMO systems. IEEE Transactions on Communications, 61, 1436–1449.CrossRefGoogle Scholar
  21. 21.
    Ma, X., Yang, L., & Giannakis, G. B. (2005). Optimal training for MIMO frequency-selective fading channels. IEEE Transactions on Wireless Communications, 4(2), 453–466.CrossRefGoogle Scholar
  22. 22.
    Hoydis, J., Kobayashi, M., & Debbah, M. (2011). Optimal channel training in uplink network MIMO systems. IEEE Transactions on Signal Processing, 59(6), 2824–2833.MathSciNetCrossRefGoogle Scholar
  23. 23.
    Savazzi, S., & Spagnolini, U. (2009). Optimizing training lengths and training intervals in time-varying fading channels. IEEE Transactions on Signal Processing, 57(3), 1098–1112.MathSciNetCrossRefzbMATHGoogle Scholar
  24. 24.
    Sheng, Z., Tuan, H. D., Nguyen, H. H., & Debbah, M. (2017). Optimal training sequences for large-scale MIMO-OFDM systems. IEEE Transactions on Signal Processing, 65(13), 3329–3343.MathSciNetCrossRefGoogle Scholar
  25. 25.
    Liu, Y., Elkashlan, M., Ding, Z., & Karagiannidis, G. K. (2016). Fairness of user clustering in MIMO non-orthogonal multiple access systems. IEEE Communications Letters, 20(7), 1465–1468.Google Scholar
  26. 26.
    Huh, H., Moon, S. H., Kim, Y. T., Lee, I., & Caire, G. (2011). Multi-cell MIMO downlink with cell cooperation and fair scheduling: A large-system limit analysis. IEEE Transactions on Information Theory, 57(12), 7771–7786.MathSciNetCrossRefzbMATHGoogle Scholar
  27. 27.
    Chen, D. C., Quek, T. Q. S., & Kountouris, M. (2015). Backhauling in heterogeneous cellular networks: Modeling and tradeoffs. IEEE Transactions on Wireless Communications, 14(6), 3194–3206.CrossRefGoogle Scholar
  28. 28.
    Goldsmith, A. (2005). Wireless communications. Cambridge: Cambridge University Press.CrossRefGoogle Scholar
  29. 29.
    Rappaport, T. S. (2002). Wireless communications: Principles and practice. Upper Saddle River, NJ: Prentice-Hall Inc.zbMATHGoogle Scholar
  30. 30.
    Burden, R. L., & Faires, J. D. (1985). Numerical analysis (3rd ed.). Boston, MA: Prindle, Weber & Schmidt.zbMATHGoogle Scholar
  31. 31.
    Simon, M. K. (2007). Probability distributions involving Gaussian random variables: A handbook for engineers and scientists. Berlin: Springer.zbMATHGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Department of Electrical Engineering, Faculty of EngineeringUniversity of MalayaKuala LumpurMalaysia

Personalised recommendations