WOA-NN: a decision algorithm for vertical handover in heterogeneous networks

  • Divya ParambancharyEmail author
  • V. Malleswara Rao


The heterogeneous network of a 4th generation not always support better communication and mobility between the Wireless Access Networks. Hence, the vertical handoff is highly necessitated. This paper establishes vertical handover, which is context-aware in a heterogeneous environment with WiMax and WiFi. Successful handover results with the better determination of handover points. So, an Artificial Neural Network-based network model to understand the network characteristics is firstly developed. Under simulated environment, the Received Signal Strength (RSS) of the heterogeneous network is observed to construct the training library. The trained network predicts RSS for resolving the handover points in the heterogeneous network. To ensure precise learning of the neural network about the RSS network characteristics, a renowned Whale Optimization Algorithm (WOA) is developed. The performance of WOA-NN model is compared with the conventional Levenberg–Marquardt-Neural Network, Fire Fly-Neural Network, Particle Swarm Optimization-Neural Network and Grey Wolf Optimization-Neural Network through throughput, handover, predicted RSS and Mean Absolute Error analyses. The predicted RSS of the proposed WOA-NN-based network model seems nearly closer to the actual model, attaining effective handoff.


Heterogeneous network WiFi WiMax Vertical handover RSS 


  1. 1.
    Lee, J. H., Pack, S., Kwon, T., & Choi, Y. (2011). Reducing handover delay by location management in mobile WiMAX multicast and broadcast services. IEEE Transactions on Vehicular Technology, 60(2), 605–617.CrossRefGoogle Scholar
  2. 2.
    Multimedia Broadcast/Multicast Service (MBMS); Architecture and Functional Description (Rel. 8), Third Generation Partnership Project TS 23.246, v8.1.0, Dec. 2007. Available:
  3. 3.
    Broadcast/Multicast Services (BCMCS)—Stage 1, Third Generation Partnership Project2 S.R0030-A, v1.0, Jan. 2004. Available:
  4. 4.
    The WiMAX Forum. (2010).
  5. 5.
    Fu, A., Zhang, Y., Zhu, Z., & Liu, X. (2010). A fast handover authentication mechanism based on ticket for IEEE 802.16m. IEEE Communications Letters, 14(12), 1134–1136.CrossRefGoogle Scholar
  6. 6.
    Shan, L., Liu, F., & Yang, K. (2009). Performance analysis of group handover scheme for IEEE 802.16j-enabled vehicular networks. In Proceedings of 2009 advances in data and web management (pp. 653–658).Google Scholar
  7. 7.
    Jing, Q., Zhang, Y., Fu, A., Liu, X. (2011). A privacy preserving handover authentication scheme for EAP-based wireless networks. In 2011 IEEE Global Telecommunications Conference - GLOBECOM 2011, Houston, TX, USA (pp. 1–6).Google Scholar
  8. 8.
    Choi, H. H., Lim, J. B., Hwang, H., & Jang, K. (2010) Optimal handover decision algorithm for throughput enhancement in cooperative cellular networks. In 2010 IEEE 72nd vehicular technology conferencefall, Ottawa, ON (pp. 1–5).Google Scholar
  9. 9.
    Taha, A. M., Abdel-Hamid, A. T., & Tahar, S. (2009). Formal analysis of the handover schemes in mobile WiMAX networks. In 2009 IFIP international conference on wireless and optical communications networks, Cairo (pp. 1–5).Google Scholar
  10. 10.
    Hu, R. Q., Paranchych, D., Fong, M. H., & Wu, G. (2007). On the evolution of handoff management and network architecture in WiMAX. In 2007 IEEE mobile WiMAX symposium, Orlando, FL (pp. 144–149).Google Scholar
  11. 11.
    Hao, C., Liu, H., & Zhan, J. (2009). A velocity-adaptive handover scheme for mobile WiMAX. International Journal on Communications, Network and System Sciences, 2, 874–878.CrossRefGoogle Scholar
  12. 12.
    Wang, C., Durrani, S., Guo, J., & Zhou, X. (2015). Call completion probability in heterogeneous networks with energy harvesting base stations. In 22nd international conference on telecommunications (ICT), Sydney, NSW (pp. 191–197).Google Scholar
  13. 13.
    Ben-Mubarak, M., Ali, B. M., Noordin, N. K., Ismail, A., & Ng, C. K. (2009). Review of handovermechanisms to support triple play in mobile WiMAX. IETE Technical Review, 26(4), 258–267.CrossRefGoogle Scholar
  14. 14.
    Chen, L., Cai, X., Sofia, R., & Huang, Z. (2007). A cross-layer fast handover scheme for mobile WiMAX. In 2007 IEEE 66th vehicular technology conference, Baltimore, MD (pp. 1578–1582).Google Scholar
  15. 15.
    Anwar, M., Khosla, A., & Sood, N. (2010). A mobility improvement handover scheme for mobile WiMAX. International Journal of Computer Application, 11, 28–31.CrossRefGoogle Scholar
  16. 16.
    Chiu, C. S., & Huang, C. C. (2008). Combined partial reuse and soft handover in OFDMA downlink transmission. In VTC spring 2008IEEE vehicular technology conference, Singapore (pp. 1707–1711).Google Scholar
  17. 17.
    Tolli, A., Codreanu, M., & Juntti, M. (2008). Cooperative MIMO-OFDM cellular system with soft handover between distributed base station antennas. IEEE Transactions on Wireless Communications, 7(4), 1428–1440.CrossRefGoogle Scholar
  18. 18.
    Pollini, G. P. (1996). Trends in handover design. IEEE Communications Magazine, 34(3), 82–90.CrossRefGoogle Scholar
  19. 19.
    Amjad, M., Rehmani, M. H., & Mao, S. (2018). Wireless multimedia cognitive radio networks: A comprehensive survey. IEEE Communications Surveys & Tutorials, PP(99), 1–1.Google Scholar
  20. 20.
    Erol-Kantarci, M., & Mouftah, H. T. (2014). Radio-frequency-based wireless energy transfer in LTE-A heterogenous networks. In IEEE symposium on computers and communications (ISCC), Funchal (pp. 1–6).Google Scholar
  21. 21.
    TalebiFard, P., Wong, T., & Leung, V. C. M. (2010). Access and service convergence over the mobile internet—A survey. Computer Networks, 54(4), 545–557.CrossRefzbMATHGoogle Scholar
  22. 22.
    Hur, J., Shim, H., Kim, P., Yoon, H., & Song, N. O. (2008). Security considerations for handover schemes in mobile WiMAX networks. In 2008 IEEE Wireless Communications and Networking Conference, Las Vegas, NV (pp. 2531–2536).Google Scholar
  23. 23.
    Sarma, A., Chakraborty, S., & Nandi, S. (2016). Deciding handover points based on context-aware load balancing in a WiFi-WiMAX heterogeneous network environment. IEEE Transactions on Vehicular Technology, 65(1), 348–357.CrossRefGoogle Scholar
  24. 24.
    Fu, A., Lan, S., Huang, B., Zhu, Z., & Zhang, Y. (2012). A novel group-based handover authentication scheme with privacy preservation for mobile WiMAX networks. IEEE Communications Letters, 16(11), 1744–1747.CrossRefGoogle Scholar
  25. 25.
    Ben-Mubarak, M. A., Ali, B. M., Noordin, N. K., Ismail, A., & Ng, C. K. (2013). Fuzzy logic based self-adaptive handover algorithm for mobile WiMAX. Wireless Personal Communications, 71(2), 1421–1442.CrossRefGoogle Scholar
  26. 26.
    Nguyen, T. N., & Ma, M. (2012). Enhanced EAP-based pre-authentication for fast and secure inter-ASN handovers in mobile WiMAX networks. IEEE Transactions on Wireless Communications, 11(6), 2173–2181.CrossRefGoogle Scholar
  27. 27.
    Al Shidhani, A. A., & Leung, V. C. M. (2011). Fast and secure reauthentications for 3GPP Subscribers during WiMAX-WLAN handovers. IEEE Transactions on Dependable and Secure Computing, 8(5), 699–713.CrossRefGoogle Scholar
  28. 28.
    Huang, K.-L., Chi, K.-H., Wang, J.-T., & Tseng, C.-C. (2013). A fast authentication scheme for WiMAX–WLAN vertical handover. Wireless Personal Communications, 71(1), 555–575.CrossRefGoogle Scholar
  29. 29.
    Mirjalili, S., & Lewis, A. (2016). The Whale optimization algorithm. Advances in Engineering Software, 95, 51–67.CrossRefGoogle Scholar
  30. 30.
    Manngård, M., Kronqvist, J., & Böling, J. M. (2017). Structural learning in artificial neural networks using sparse optimization. Neurocomputing, 272(C), 660–667.Google Scholar
  31. 31.
    Bhatnagar, K., & Gupta, S. C. (2017). Extending the neural model to study the impact of effective area of optical fiber on laser intensity. International Journal of Intelligent Engineering and Systems, 10, 274–283.CrossRefGoogle Scholar
  32. 32.
    Fister, I., Fister, I., Jr., Yang, X.-S., & Brest, J. (2013). A comprehensive review of firefly algorithms. Swarm and Evolutionary Computation, 13, 34–46.CrossRefGoogle Scholar
  33. 33.
    Trelea, I. C. (2003). The particle swarm optimization algorithm: convergence analysis and parameter selection. Information Processing Letters, 85(6), 317–325.MathSciNetCrossRefzbMATHGoogle Scholar
  34. 34.
    Mirjalili, S., Mirjalili, S. M., & Lewis, A. (2014). Grey Wolf optimizer. Advances in Engineering Software, 69, 46–61.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Pillai HOC College of Engineering and TechnologyRasayaniIndia
  2. 2.Department of Electronics and Communication EngineeringGandhi Institute of TechnologyBhubaneswarIndia
  3. 3.GITAM Institute of TechnologyVisakhapatnamIndia

Personalised recommendations