Advertisement

Wireless Networks

, Volume 25, Issue 8, pp 4695–4704 | Cite as

Resource refrain quota based routing protocol for delay tolerant network

  • Qaisar Ayub
  • Sulma RashidEmail author
Article

Abstract

The delay tolerant network Spray and Wait routing protocol minimizes resource consumption by defining the ‘n’ number of message transmission quota. However, with same transmission quota, a large-size message consumes more buffer space, bandwidth and energy. Similarly, existing buffer management policies consider message-size, arrival-time, hop-count and do not notice the congestion a message has produce in the network. In order to address the aforementioned issues, we have proposed a routing protocol called as resource refrain quota based routing protocol for delay tolerant network. The proposed protocol assigns the transmission energy quota to ‘n’ number of message copies. Moreover, message was transmitted just to those nodes having high probability value to meet message destination. We have also devised a mechanism to drop those messages which are responsible to produce the congestion.

Keywords

Store-carry-forward Routing protocols Delay tolerant networking Algorithms 

Notes

Acknowledgements

This work has been supported by startup research grant program by hec under grant number No:21-1334/SRGP/R&D/HEC/2016.

References

  1. 1.
    Johnson, D. B., & Maltz, D. A. (1996). Dynamic source routing in ad hoc wireless networks. Mobile Computing353(1), 153–181.CrossRefGoogle Scholar
  2. 2.
    Johnson, D. B., Maltz, D. A., & Broch, J. (2001). DSR: The dynamic source routing protocol for multi-hop wireless ad hoc networks. Ad Hoc Networking, 5, 139–172.Google Scholar
  3. 3.
    Fall, K. (2003). A delay-tolerant network architecture for challenged internets. In Proceedings of the 2003 conference on applications, technologies, architectures, and protocols for computer communications (pp. 27–34). ACM.Google Scholar
  4. 4.
    Burleigh, S., Hooke, A., Torgerson, L., Fall, K., Cerf, V., Durst, B., et al. (2003). Delay-tolerant networking: an approach to interplanetary internet. IEEE Communications Magazine, 41(6), 128–136.CrossRefGoogle Scholar
  5. 5.
    Spyropoulos, T., Psounis, K., & Raghavendra, C. S. (2004). Single-copy routing in intermittently connected mobile networks. In 2004 first annual IEEE communications society conference on sensor and ad hoc communications and networks, 2004. IEEE SECON 2004 (pp. 235–244). IEEE.Google Scholar
  6. 6.
    Jain, S., Fall, K., & Patra, R. (2004). Routing in a delay tolerant network (Vol. 34(4), pp. 145–158). ACM.Google Scholar
  7. 7.
    Spyropoulos, T., Psounis, K., & Raghavendra, C. S. (2008). Efficient routing in intermittently connected mobile networks: The multiple-copy case. IEEE/ACM Transactions on Networking, 16(1), 77–90.CrossRefGoogle Scholar
  8. 8.
    Vahdat, A. & Becker, D. (2000). Epidemic routing for partially connected ad hoc networks. Technical report. CS-200006, Duke University.Google Scholar
  9. 9.
    Caleffi, M., & Paura, L. (2009). Opportunistic routing for disruption tolerant networks. In International conference on advanced information networking and applications workshops, 2009. WAINA’09 (pp. 826–831). IEEE.Google Scholar
  10. 10.
    Spyropoulos, T., Psounis, K., & Raghavendra, C. S. (2005). Spray and wait: An efficient routing scheme for intermittently connected mobile networks. In Proceedings of the 2005 ACM SIGCOMM workshop on delay-tolerant networking (pp. 252–259). ACM.Google Scholar
  11. 11.
    Spyropoulos, T., Psounis, K., & Raghavendra, C. S. (2007). Spray and focus: Efficient mobility-assisted routing for heterogeneous and correlated mobility. In Fifth annual IEEE international conference on pervasive computing and communications workshops, 2007. PerCom Workshops’ 07 (pp. 79–85). IEEE.Google Scholar
  12. 12.
    Wang, G., Wang, B., & Gao, Y. (2010). Dynamic spray and wait routing algorithm with quality of node in delay tolerant network. In 2010 International conference on communications and mobile computing (CMC) (Vol. 3, pp. 452–456). IEEE.Google Scholar
  13. 13.
    Zhang, J., & Luo, G. (2012). Adaptive spraying for routing in delay tolerant networks. Wireless Personal Communications, 66(1), 217–233.MathSciNetCrossRefGoogle Scholar
  14. 14.
    Ayub, Q., Zahid, M. S. M., Abdullah, A. H., & Rashid, S. (2013). Look a-Head probabilistic energy-aware routing strategy for delay tolerant network. Life Science Journal, 10(2), 1609–14.Google Scholar
  15. 15.
    Prodhan, A. T., Das, R., Kabir, H., & Shoja, G. C. (2011). TTL based routing in opportunistic networks. Journal of Network and Computer Applications, 34(5), 1660–1670.CrossRefGoogle Scholar
  16. 16.
    Wang, T., Zhou, Y., Wang, X., & Cao, Y. (2018). A social-based DTN routing in cooperative vehicular sensor networks. International Journal of Cooperative Information Systems, 27(01), 1741003.CrossRefGoogle Scholar
  17. 17.
    Lindgren, A., Doria, A., & Schelen, O. (2004). Probabilistic routing in intermittently connected networks. In Service assurance with partial and intermittent resources (pp. 239–254). Springer, Berlin.Google Scholar
  18. 18.
    Jathar, R., & Gupta, A. (2010). Probabilistic routing using contact sequencing in delay tolerant networks. In 2010 second international conference on communication systems and networks (COMSNETS) (pp. 1–10). IEEE.Google Scholar
  19. 19.
    Sok, P., & Kim, K. (2013). Distance-based PRoPHET routing protocol in disruption tolerant network. In 2013 international conference on ICT convergence (ICTC) (pp. 159–164). IEEE.Google Scholar
  20. 20.
    Medjiah, S. & Ahmed, T. (2011). Orion routing protocol for delay tolerant networks. In 2011 IEEE international conference on communications (ICC) (pp. 1–6). IEEE.Google Scholar
  21. 21.
    Ayub, Q., Rashid, S., Zahid, M. S. M., & Abdullah, A. H. (2014). Contact quality based forwarding strategy for delay tolerant network. Journal of Network and Computer Applications, 39, 302–309.CrossRefGoogle Scholar
  22. 22.
    Ayub, Q., Zahid, M. S. M., Rashid, S., & Abdullah, A. H. (2014). DF++: An adaptive buffer-aware probabilistic delegation forwarding protocol for delay tolerant network. Cluster Computing, 17(4), 1465–1472.CrossRefGoogle Scholar
  23. 23.
    Ayub, Q., Zahid, S. M., Rashid, S., & Abdullah, A. H. (2015). Threshold based best custodian routing protocol for delay tolerant network. International Journal of Computers Communications & Control, 10(3), 298–307.CrossRefGoogle Scholar
  24. 24.
    Ayub, Q., Zahid, M. S. M., Rashid, S., & Abdullah, A. H. (2013). Threshold based locking routing strategy for delay tolerant network. Wireless Networks, 19(8), 2067–2078.CrossRefGoogle Scholar
  25. 25.
    Nelson, S. C., Bakht, M., & Kravets, R. (2009). Encounter-based routing in DTNs. In INFOCOM 2009, IEEE (pp. 846-854). IEEE.Google Scholar
  26. 26.
    Abdelkader, T., Naik, K., Nayak, A., & Goel, N. (2010). A socially-based routing protocol for delay tolerant networks. In Global telecommunications conference (GLOBECOM 2010), 2010 IEEE (pp. 1–5). IEEE.Google Scholar
  27. 27.
    Hui, P., Crowcroft, J., & Yoneki, E. (2011). Bubble rap: Social-based forwarding in delay-tolerant networks. IEEE Transactions on Mobile Computing, 10(11), 1576–1589.CrossRefGoogle Scholar
  28. 28.
    Abdelkader, T., Naik, K., Nayak, A., Goel, N., & Srivastava, V. (2013). SGBR: A routing protocol for delay tolerant networks using social grouping. IEEE Transactions on Parallel and Distributed Systems, 24(12), 2472–2481.CrossRefGoogle Scholar
  29. 29.
    Dang, H., & Wu, H. (2010). Clustering and cluster-based routing protocol for delay-tolerant mobile networks. IEEE Transactions on Wireless Communications, 9(6), 1874–1881.CrossRefGoogle Scholar
  30. 30.
    Zhu, Y., Xu, B., Shi, X., & Wang, Y. (2013). A survey of social-based routing in delay tolerant networks: Positive and negative social effects. IEEE Communications Surveys and Tutorials, 15(1), 387–401.CrossRefGoogle Scholar
  31. 31.
    Elwhishi, A., Pin-Han, H., Naik, K., & Shihada, B. (2013). Self-adaptive contention aware routing protocol for intermittently connected mobile networks. IEEE Transactions on Parallel and Distributed Systems, 24(7), 1422–1435.CrossRefGoogle Scholar
  32. 32.
    Cacciapuoti, A. S., Caleffi, M., & Paura, L. (2009). A theoretical model for opportunistic routing in ad hoc networks. In International conference on ultra modern telecommunications & workshops, 2009. ICUMT’09 (pp. 1–7). IEEE.Google Scholar
  33. 33.
    Logambigai, R., & Kannan, A. (2016). Fuzzy logic based unequal clustering for wireless sensor networks. Wireless Networks, 22(3), 945–957.CrossRefGoogle Scholar
  34. 34.
    Selvi, M., Velvizhy, P., Ganapathy, S., Nehemiah, H. K., & Kannan, A. (2017). A rule based delay constrained energy efficient routing technique for wireless sensor networks. Cluster Computing 1–10.Google Scholar
  35. 35.
    Muthurajkumar, S., Ganapathy, S., Vijayalakshmi, M., & Kannan, A. (2017). An intelligent secured and energy efficient routing algorithm for MANETs. Wireless Personal Communications, 96(2), 1753–1769.CrossRefGoogle Scholar
  36. 36.
    Logambigai, R., Ganapathy, S., & Kannan, A. (2018). Energyefficient gridbased routing algorithm using intelligent fuzzy rules for wireless sensor networks. Computers & Electrical Engineering, 68, 62–75.CrossRefGoogle Scholar
  37. 37.
    Fathima, G., & Wahidabanu, R. S. D. (2014). Prioritization of traffic for resource constrained delay tolerant networks. International Journal of Computers Communications & Control, 7(2), 252–263.CrossRefGoogle Scholar
  38. 38.
    Ayub, Q., Ngadi, A., Rashid, S., & Habib, H. A. (2018). Priority queue based reactive buffer management policy for delay tolerant network under city based environments. PloS one13(2), 1–24.CrossRefGoogle Scholar
  39. 39.
    Li, Y., Zhao, L., Liu, Z., & Liu, Q. (2009). N-drop: Congestion control strategy under epidemic routing in DTN. In Proceedings of the 2009 international conference on wireless communications and mobile computing: Connecting the world wirelessly (pp. 457–460). ACM.Google Scholar
  40. 40.
    Kernen, A., & Ott, J. (2007). Increasing reality for dtn protocol simulations. Technical report. Helsinki University of Technology.Google Scholar
  41. 41.
    Bigwood, G., & Henderson, T. (2011). Bootstrapping opportunistic networks using social roles. In 2011 IEEE international symposium on a world of wireless, mobile and multimedia networks (WoWMoM) (pp. 1–8). IEEE.Google Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  1. 1.University of Engineering and TechnologyTaxilaPakistan
  2. 2.COMSATS University, Wah CampusWah CanttPakistan

Personalised recommendations