Advertisement

Wireless Networks

, Volume 25, Issue 8, pp 4493–4522 | Cite as

Congestion control in wireless sensor and 6LoWPAN networks: toward the Internet of Things

  • Hayder A. A. Al-KashoashEmail author
  • Harith Kharrufa
  • Yaarob Al-Nidawi
  • Andrew H. Kemp
Article

Abstract

The Internet of Things (IoT) is the next big challenge for the research community where the IPv6 over low power wireless personal area network (6LoWPAN) protocol stack is a key part of the IoT. Recently, the IETF ROLL and 6LoWPAN working groups have developed new IP based protocols for 6LoWPAN networks to alleviate the challenges of connecting low memory, limited processing capability, and constrained power supply sensor nodes to the Internet. In 6LoWPAN networks, heavy network traffic causes congestion which significantly degrades network performance and impacts on quality of service aspects such as throughput, latency, energy consumption, reliability, and packet delivery. In this paper, we overview the protocol stack of 6LoWPAN networks and summarize a set of its protocols and standards. Also, we review and compare a number of popular congestion control mechanisms in wireless sensor networks (WSNs) and classify them into traffic control, resource control, and hybrid algorithms based on the congestion control strategy used. We present a comparative review of all existing congestion control approaches in 6LoWPAN networks. This paper highlights and discusses the differences between congestion control mechanisms for WSNs and 6LoWPAN networks as well as explaining the suitability and validity of WSN congestion control schemes for 6LoWPAN networks. Finally, this paper gives some potential directions for designing a novel congestion control protocol, which supports the IoT application requirements, in future work.

Keywords

Wireless sensor networks 6LoWPAN networks Internet of Things Congestion control Resource control Traffic control Hybrid schemes 

References

  1. 1.
    Shelby, Z., & Bormann, C. (2009). 6LoWPAN: The wireless embedded internet. Hoboken: Wiley.CrossRefGoogle Scholar
  2. 2.
    Atzori, L., Iera, A., & Morabito, G. (2010). The Internet of Things: A survey. Computer Networks, 54(15), 2787–2805.zbMATHCrossRefGoogle Scholar
  3. 3.
    Alcaraz, C., Najera, P., Lopez, J. & Roman, R. (2010). Wireless sensor networks and the Internet of Things: Do we need a complete integration? In: 1st International workshop on the security of the Internet of Things (SecIoT’10), Tokyo (Japan), 29 November.Google Scholar
  4. 4.
    Khalil, N., Abid, M. R., Benhaddou, D. & Gerndt, M. (2014). Wireless sensors networks for Internet of Things. In: IEEE 9th international conference on intelligent sensors, sensor networks and information processing (ISSNIP), 2014 (pp. 1–6). IEEE.Google Scholar
  5. 5.
    Al-Kashoash, H., & Kemp, A. H. (2017). Comparison of 6LoWPAN and LPWAN for the Internet of Things. Australian Journal of Electrical and Electronics Engineering, 13(4), 268–274.CrossRefGoogle Scholar
  6. 6.
    Ghaffari, A. (2015). Congestion control mechanisms in wireless sensor networks: A survey. Journal of Network and Computer Applications, 52, 101–115.CrossRefGoogle Scholar
  7. 7.
    Kafi, M. A., Djenouri, D., Ben-Othman, J., & Badache, N. (2014). Congestion control protocols in wireless sensor networks: A survey. IEEE Communications Surveys & Tutorials, 16(3), 1369–1390.CrossRefGoogle Scholar
  8. 8.
    Flora, D. J., Kavitha, V. & Muthuselvi, M. (2011). A survey on congestion control techniques in wireless sensor networks. In International conference on emerging trends in electrical and computer technology (ICETECT), 2011 (pp. 1146–1149). IEEE.Google Scholar
  9. 9.
    Yuan, H., Yugang, N., & Fenghao, G. (2014). Congestion control for wireless sensor networks: A survey. In: The 26th Chinese Control and Decision Conference (2014 CCDC) (pp. 4853–4858) IEEE.Google Scholar
  10. 10.
    Pant, N., Singh, M. & Kumar, P. (2014). Traffic and resource based methods for congestion control in wireless sensor networks: A comparative analysis. In IEEE 6th international conference on adaptive science & technology (ICAST), 2014 (pp. 1–6). IEEE.Google Scholar
  11. 11.
    Zhao, J., Wang, L., Li, S., Liu, X., Yuan, Z. & Gao, Z. (2010). A survey of congestion control mechanisms in wireless sensor networks. In 6th International conference on intelligent information hiding and multimedia signal processing (IIH-MSP), 2010 (pp. 719–722). IEEE.Google Scholar
  12. 12.
    Gowthaman, P., & Chakravarthi, R. (2013). Survey on various congestion detection and control protocols in wireless sensor networks. International Journal of Advanced Computer Technology, 2(4), 15–19.Google Scholar
  13. 13.
    Chakravarthi, R., Gomathy, C., Sebastian, S. K., Pushparaj, K., & Mon, V. B. (2010). A Survey on Congestion Control in Wireless Sensor Networks. International Journal of Computer Science & Communication, 1(1), 161–164.Google Scholar
  14. 14.
    Budhwar, P. (2015). A survey of transport layer protocols for wireless sensor networks. Journal of Emerging Technologies and Innovative Research (JETIR), 2, 985–991.Google Scholar
  15. 15.
    Sergiou, C., Antoniou, P., & Vassiliou, V. (2014). A comprehensive survey of congestion control protocols in wireless sensor networks. IEEE Communications Surveys & Tutorials, 16(4), 1839–1859.CrossRefGoogle Scholar
  16. 16.
    Shelby, Z., Hartke, K. & Bormann, C. (2014). The constrained application protocol (CoAP). IETF RFC 7252.Google Scholar
  17. 17.
    Tanenbaum, A. S., & Wetherall, D. J. (2013). Computer Networks: Pearson New International Edition. Hertfordshire: University of Hertfordshire, Pearson Higher Ed.Google Scholar
  18. 18.
    Gomez, C., Kim, E., Kaspar, D. & Bormann, C. Problem statement and requirements for IPv6 over low-power wireless personal area network (6LoWPAN) routing. IETF RFC 6606.Google Scholar
  19. 19.
    Chowdhury, A. H., Ikram, M., Cha, H.-S., Redwan, H., Shams, S., Kim, K.-H. & Yoo, S.-W. (2009). Route-over vs Mesh-under Routing in 6LoWPAN. In Proceedings of the 2009 international conference on wireless communications and mobile computing: Connecting the world wirelessly (pp. 1208–1212). ACM.Google Scholar
  20. 20.
    Yoo, S., Lee, J., & Mulligan, G. (2007). Hierarchical routing over 6LoWPAN (HiLow), draft-daniel-6lowpan-hilow-hierarchical-routing-01, IETF Network Working Group. Internet-Draft: Technical Report.Google Scholar
  21. 21.
    Kim, K., Park, S. D., Montenegro, G., Yoo, S. & Kushalnagar, N. (2007). 6LoWPAN ad hoc on-demand distance vector routing (LOAD). In Internet Draft, draft-daniel-6lowpan-load-adhoc-routing-03, IETF.Google Scholar
  22. 22.
    Kim, K., Montenegro, G., Park, S., Chakeres, I., & Perkins, C. (2007). Dynamic MANET On-demand for 6LoWPAN (DYMO-low) Routing. Internet-Draft: IETF.Google Scholar
  23. 23.
    Winter, T., Thubert, P., Brandt, A., Hui, J. & Kelsey, R. (2012). RPL: IPv6 routing protocol for low-power and Lossy networks. IETF, RFC 6550.Google Scholar
  24. 24.
    Hui, J. & Thubert, P. (2011). Compression format for IPv6 datagrams over IEEE 802.15. 4-based networks. IETF RFC 6282.Google Scholar
  25. 25.
    Montenegro, G., Kushalnagar, N., Hui, J. & Culler, D. (2007). Transmission of IPv6 packets over IEEE 802.15.4 networks. IETF RFC 4944.Google Scholar
  26. 26.
    Committee, L. S. et al. (2003). Part 15.4: Wireless medium access control (MAC) and physical layer (PHY) specifications for low-rate wireless personal area aetworks (LR-WPANs). IEEE Computer Society.Google Scholar
  27. 27.
    Yinbiao, S. et al. (2014). Internet of Things: Wireless sensor networks. White Paper, International Electrotechnical Commission (IEC).Google Scholar
  28. 28.
    Reena, P., & Jacob, L. (2007) Hop-by-hop versus end-to-end congestion control in wireless multi-hop UWB networks. In: International conference on IEEE advanced computing and communications, ADCOM 2007 (pp. 255–261).Google Scholar
  29. 29.
    Heimlicher, S., Nuggehalli, P., & May, M. (2007). End-to-end vs. Hop-by-hop transport. SIGMETRICS Performance Evaluation Review, 35(3), 59–60.CrossRefGoogle Scholar
  30. 30.
    Heimlicher, S., Karaliopoulos, M., Levy, H. & May, M. (2007). End-to-end vs. Hop-by-hop transport under intermittent connectivity. In: Proceedings of the 1st international conference on Autonomic computing and communication systems (p. 20). ICST (Institute for Computer Sciences, Social-Informatics and Telecommunications Engineering).Google Scholar
  31. 31.
    Kafi, M. A., Djenouri, D., Othman, J. B., Ouadjaout, A., & Badache, N. (2014). Congestion detection strategies in wireless sensor networks: A comparative study with testbed experiments. Procedia Computer Science, 37, 168–175.CrossRefGoogle Scholar
  32. 32.
    Yin, X., Zhou, X., Huang, R., Fang, Y., & Li, S. (2009). A fairness-aware congestion control scheme in wireless sensor networks. IEEE Transactions on Vehicular Technology, 58(9), 5225–5234.CrossRefGoogle Scholar
  33. 33.
    Wan, C.-Y., Eisenman, S. B. & Campbell, A. T. (2003). CODA: Congestion detection and avoidance in sensor networks. In Proceedings of the 1st international conference on Embedded networked sensor systems (pp. 266–279). ACM.Google Scholar
  34. 34.
    Sankarasubramaniam, Y., Akan, Ö. B., & Akyildiz, I. F. (2003). ESRT: Event-to-sink reliable transport in wireless sensor networks. In Proceedings of the 4th ACM international symposium on Mobile ad hoc networking & computing (pp. 177–188). ACM.Google Scholar
  35. 35.
    Michopoulos, V., Guan, L., Oikonomou, G. & Phillips, I. (2012). DCCC6: Duty cycle-aware congestion control for 6LoWPAN networks. In IEEE International conference on pervasive computing and communications workshops (PERCOM Workshops), 2012 (pp. 278–283). IEEE.Google Scholar
  36. 36.
    Deshpande, V. S., Chavan, P. P., Wadhai, V. M. & Helonde, J. B. (2012). Congestion control in wireless sensor networks by using differed reporting rate. In World congress on information and communication technologies (WICT) (209–213). IEEE.Google Scholar
  37. 37.
    Wang, C., Li, B., Sohraby, K., Daneshmand, M., & Hu, Y. (2007). Upstream congestion control in wireless sensor networks through cross-layer optimization. IEEE Journal on Selected Areas in Communications, 25(4), 786–795.CrossRefGoogle Scholar
  38. 38.
    Hull, B., Jamieson, K. & Balakrishnan, H. (2004). Mitigating congestion in wireless sensor networks. In Proceedings of the 2nd international conference on Embedded networked sensor systems (pp. 134–147). ACM.Google Scholar
  39. 39.
    Jaiswal, S. & Yadav, A. (2013). Fuzzy based adaptive congestion control in wireless sensor networks. In 6th International conference on contemporary computing (IC3), 2013 (pp. 433–438). IEEE.Google Scholar
  40. 40.
    Sergiou, C., Vassiliou, V., & Paphitis, A. (2013). Hierarchical tree alternative path (HTAP) algorithm for congestion control in wireless sensor networks. Ad Hoc Networks, 11(1), 257–272.CrossRefGoogle Scholar
  41. 41.
    Kim, H.-S., Paek, J., & Bahk, S. (2015). QU-RPL: Queue utilization based RPL for load balancing in large scale industrial applications. In: 12th Annual IEEE international conference on sensing, communication, and networking (SECON) (pp. 265–273). IEEE.Google Scholar
  42. 42.
    Castellani, A. P., Rossi, M., & Zorzi, M. (2014). Back pressure congestion control for CoAP/6LoWPAN networks. Ad Hoc Networks, 18, 71–84.CrossRefGoogle Scholar
  43. 43.
    Huang, J.-M., Li, C.-Y., & Chen, K.-H. (2009). TALONet: A power-efficient grid-based congestion avoidance scheme using multi-detouring technique in wireless sensor networks. In Wireless Telecommunications Symposium, WTS (pp. 1–6). IEEE.Google Scholar
  44. 44.
    Al-Kashoash, H. A. A., Al-Nidawi, Y., & Kemp, A. H. (2016). Congestion-aware RPL for 6LoWPAN networks. In Accepted at Wireless Telecommunications Symposium (WTS) (1–6). IEEE.Google Scholar
  45. 45.
    Wan, J., Xu, X., Feng, R., & Wu, Y. (2009). Cross-layer active predictive congestion control protocol for wireless sensor networks. Sensors, 9(10), 8278–8310.CrossRefGoogle Scholar
  46. 46.
    Rangwala, S., Gummadi, R., Govindan, R., & Psounis, K. (2006). Interference-aware fair rate control in wireless sensor networks. ACM SIGCOMM Computer Communication Review, 36(4), 63–74.CrossRefGoogle Scholar
  47. 47.
    Fang, W.-W., Chen, J.-M., Shu, L., Chu, T.-S., & Qian, D.-P. (2010). Congestion avoidance, detection and alleviation in wireless sensor networks. Journal of Zhejiang University SCIENCE C, 11(1), 63–73.CrossRefGoogle Scholar
  48. 48.
    Sheu, J.-P., & Hu, W.-K. (2008). Hybrid congestion control protocol in wireless sensor networks. In Vehicular Technology Conference. VTC Spring 2008 (pp. 213–217). IEEE.Google Scholar
  49. 49.
    Kang, J., Zhang, Y., & Nath, B. (2007). TARA: Topology-aware resource adaptation to alleviate congestion in sensor networks. IEEE Transactions on Parallel and Distributed Systems, 18(7), 919–931.CrossRefGoogle Scholar
  50. 50.
    Lee, J.-H., & Jung, I.-B. (2010). Adaptive-compression based congestion control technique for wireless sensor networks. Sensors, 10(4), 2919–2945.CrossRefGoogle Scholar
  51. 51.
    Sheu, J. P., Hsu, C. X. & Ma, C. (2015). A game theory based congestion control protocol for wireless personal area networks. In IEEE 39th Annual Computer Software and Applications Conference (COMPSAC) (Vol. 2, July).Google Scholar
  52. 52.
    Ma, C., Sheu, J.-P. & Hsu, C.-X. (2015). A game theory based congestion control protocol for wireless personal area networks. Journal of Sensors, 2016.Google Scholar
  53. 53.
    Fahmy, H. M. A. (2016). Simulators and emulators for WSNs. In Wireless sensor networks (pp. 381–491). Springer.Google Scholar
  54. 54.
    Levis, P., Madden, S., Polastre, J., Szewczyk, R., Whitehouse, K., Woo, A., Gay, D., Hill, J., Welsh, M. & Brewer, E., et al. (2005). TinyOS: An operating system for sensor networks. In: Ambient intelligence (pp. 115–148). Springer.Google Scholar
  55. 55.
    Dunkels, A., Grönvall, B. & Voigt, T. (2004). Contiki—A lightweight and flexible operating system for tiny networked sensors. In 29th Annual IEEE international conference on local computer networks, 2004 (pp. 455–462). IEEE.Google Scholar
  56. 56.
    Dunkels, A. (2009). Contiki: Bringing IP to sensor networks. ERCIM News, 76.Google Scholar
  57. 57.
    Dunkels, A., Eriksson, J., Finne, N. & Tsiftes, N. (2011). Powertrace: Network-level power profiling for low-power wireless networks.Google Scholar
  58. 58.
    Baccelli, E., Hahm, O., Gunes, M., Wahlisch, M. & Schmidt, T. C. (2013). RIOT OS: Towards an OS for the Internet of Things. In Proceedings of the 32nd IEEE International Conference on Computer Communications (INFOCOM) (pp. 79–80). IEEE.Google Scholar
  59. 59.
    Will, H., Schleiser, K. & Schiller, J. (2009). A real-time kernel for wireless sensor networks employed in rescue scenarios. In IEEE 34th Conference on Local Computer Networks (LCN 2009) (pp. 834–841). IEEE.Google Scholar
  60. 60.
    Levis, P. & Lee, N. (2003). TOSSIM: A simulator for TinyOS networks. UC Berkeley (September, Vol. 24).Google Scholar
  61. 61.
    Osterlind, F., Dunkels, A., Eriksson, J., Finne, N. & Voigt, T. (2006). Cross-Level Sensor Network Simulation with COOJA. In Proceedings 31st IEEE conference on local computer networks (pp. 641–648). IEEE.Google Scholar
  62. 62.
    Österlind, F., Eriksson, J. & Dunkels, A. (2010). Cooja TimeLine: A power visualizer for sensor network simulation. In Proceedings of the 8th ACM Conference on Embedded Networked Sensor Systems (pp. 385–386). ACM.Google Scholar
  63. 63.
    Downard, I. T. (2004). Simulating Sensor Networks in NS-2. DTIC Document: Technical Report.Google Scholar
  64. 64.
    Henderson, T. R., Lacage, M., Riley, G. F., Dowell, C., & Kopena, J. (2008). Network Simulations with the ns-3 Simulator. SIGCOMM Demonstration, 15, 17.Google Scholar
  65. 65.
    Simon, G., Volgyesi, P., Maróti, M. & Lédeczi, Á. (2003). Simulation-based optimization of communication protocols for large-scale wireless sensor networks. In IEEE aerospace conference (Vol. 3, pp. 1339–1346).Google Scholar
  66. 66.
    Chang, X. (1999). Network simulations with OPNET. In Proceedings of the 31st conference on Winter simulation: Simulation—A bridge to the future-Volume 1 (pp. 307–314). ACM.Google Scholar
  67. 67.
    Varga, A. (2001). The OMNeT++ discrete event simulation system. In: Proceedings of the European simulation multiconference (ESM’2001) (pp. 185–192).Google Scholar
  68. 68.
    Kirsche, M. & Hartwig, J. (2013). A 6LoWPAN Model for OMNeT++: Poster Abstract. In Proceedings of the 6th International ICST Conference on Simulation Tools and Techniques (pp. 330–333). ICST (Institute for Computer Sciences, Social-Informatics and Telecommunications Engineering).Google Scholar
  69. 69.
    Ee, C. T. & Bajcsy, R. (2004). Congestion control and fairness for many-to-one routing in sensor networks. In Proceedings of the 2nd international conference on Embedded networked sensor systems (pp. 148–161). ACM.Google Scholar
  70. 70.
    Zawodniok, M., & Jagannathan, S. (2007). Predictive congestion control protocol for wireless sensor networks. IEEE Transactions on Wireless Communications, 6(11), 3955–3963.CrossRefGoogle Scholar
  71. 71.
    Chen, S. & Zhang, Z. (2006). Localized algorithm for aggregate fairness in wireless sensor networks. In Proceedings of the 12th annual international conference on Mobile computing and networking (pp. 274–285). ACM.Google Scholar
  72. 72.
    Chen, S., & Yang, N. (2006). Congestion avoidance based on lightweight buffer management in sensor networks. IEEE Transactions on Parallel and Distributed Systems, 17(9), 934–946.CrossRefGoogle Scholar
  73. 73.
    Monowar, M. M., Rahman, M. O. & Hong, C. S. (2008). Multipath congestion control for heterogeneous traffic in wireless sensor network. In 10th International Conference on Advanced Communication Technology, ICACT 2008 (Vol. 3, pp. 1711–1715). IEEE.Google Scholar
  74. 74.
    Wang, G. & Liu, K. (2009). Upstream Hop-by-Hop Congestion Control in Wireless Sensor Networks. In IEEE 20th International Symposium on Personal, Indoor and Mobile Radio Communications (pp. 1406–1410). IEEE.Google Scholar
  75. 75.
    Alam, M. M., & Hong, C. S. (2009). CRRT: Congestion-aware and rate-controlled reliable transport in wireless sensor networks. IEICE Transactions on Communications, 92(1), 184–199.CrossRefGoogle Scholar
  76. 76.
    Brahma, S., Chatterjee, M. & Kwiat, K. (2010). Congestion control and fairness in wireless sensor networks. In 8th IEEE international conference on pervasive computing and communications workshops (PERCOM Workshops) (pp. 413–418). IEEE.Google Scholar
  77. 77.
    Heikalabad, S. R., Ghaffari, A., Hadian, M. A. & Rasouli, H. (2011). DPCC: Dynamic predictive congestion control in wireless sensor networks. IJCSI International Journal of Computer Science Issues, 8 (1).Google Scholar
  78. 78.
    Munir, S. A., Bin, Y. W., Biao, R. & Jian, M. (2007). Fuzzy logic based congestion estimation for QoS in wireless sensor network. In Wireless communications and networking conference, WCNC 2007 (pp. 4336–4341). IEEE.Google Scholar
  79. 79.
    Wei, J., Fan, B. & Sun, Y. (2012). A congestion control scheme based on fuzzy logic for wireless sensor networks. In 9th International conference on fuzzy systems and knowledge discovery (FSKD) (pp. 501–504). IEEE.Google Scholar
  80. 80.
    He, T., Ren, F., Lin, C. & Das, S. (2008). Alleviating congestion using traffic-aware dynamic routing in wireless sensor networks. In 5th Annual IEEE communications society conference on sensor, mesh and ad hoc communications and networks, 2008. SECON’08 (pp. 233–241). IEEE.Google Scholar
  81. 81.
    Woo, A., Tong, T. & Culler, D. (2003). Taming The underlying challenges of reliable multihop routing in sensor networks. In Proceedings of the 1st international conference on Embedded networked sensor systems (pp. 14–27). ACM.Google Scholar
  82. 82.
    Rahman, M. O., Monowar, M. M. & Hong, C. S. (2008). A QoS adaptive congestion control in wireless sensor network. In 10th International conference on advanced communication technology, 2008, ICACT 2008 (Vol. 2, pp. 941–946). IEEE.Google Scholar
  83. 83.
    Wang, C., Sohraby, K. & Li, B. (2005). SenTCP: A hop-by-hop congestion control protocol for wireless sensor networks. In IEEE INFOCOM (pp. 107–114).Google Scholar
  84. 84.
    Sergiou, C., Vassiliou, V., & Paphitis, A. (2014). Congestion control in wireless sensor networks through dynamic alternative path selection. Computer Networks, 75, 226–238.CrossRefGoogle Scholar
  85. 85.
    Dasgupta, R., Mukherjee, R., & Gupta, A. (2015). Congestion avoidance topology in wireless sensor network using Karnaugh Map. In Applications and innovations in mobile computing (AIMoC) (pp. 89–96). IEEE.Google Scholar
  86. 86.
    Razzaque, M. A. & Hong, C. S. (2009). Congestion detection and control algorithms for multipath data forwarding in sensor networks. In 11th International conference on advanced communication technology, ICACT (Vol. 1, pp. 651–653).Google Scholar
  87. 87.
    Sergiou, C. & Vassiliou, V. (2014). HRTC: A hybrid algorithm for efficient congestion control in wireless sensor networks. In 6th International conference on new technologies, mobility and security (NTMS) (pp. 1–5). IEEE.Google Scholar
  88. 88.
    Tassiulas, L., & Ephremides, A. (1992). Stability properties of constrained queueing systems and scheduling policies for maximum throughput in multihop radio networks. IEEE Transactions on Automatic Control, 37(12), 1936–1948.zbMATHMathSciNetCrossRefGoogle Scholar
  89. 89.
    Hellaoui, H. & Koudil, M. (2015). Bird flocking congestion control for CoAP/RPL/6LoWPAN networks. In Proceedings of the 2015 Workshop on IoT challenges in Mobile and Industrial Systems (pp. 25–30). ACM.Google Scholar
  90. 90.
    Kim, H.-S., Kim, H., Paek, J. & Bahk, S. (2016). Load balancing under heavy traffic in rpl routing protocol for low power and lossy networks. IEEE Transactions on Mobile Computing.Google Scholar
  91. 91.
    Thubert, P. (2012). Objective function zero for the routing protocol for low-power and Lossy networks (RPL). RFC 6552.Google Scholar
  92. 92.
    Gnawali, O. & Levis, P. (2010). The ETX objective function for RPL. Internet Draft: Draft-gnawali-roll-etxof-00.Google Scholar
  93. 93.
    Tang, W., Ma, X., Huang, J. & Wei, J. (2015). Toward improved rpl: A congestion avoidance multipath routing protocol with time factor for wireless sensor networks. Journal of Sensors, 2016.Google Scholar
  94. 94.
    Kamgueu, P. O., Nataf, E., Ndié, T. D. & Festor, O. (2013). Energy-based routing metric for RPL. [Research Report] RR-8208, INRIA (p. 14).Google Scholar
  95. 95.
    Lodhi, M. A., Rehman, A., Khan, M. M. & Hussain, F. B. (2015). Multiple path RPL for low power Lossy networks. In IEEE Asia Pacific conference on wireless and mobile (APWiMob), 2015 (pp. 279–284). IEEE.Google Scholar
  96. 96.
    Ha, M., Kwon, K., Kim, D. & Kong, P.-Y. (2014). Dynamic and distributed load balancing scheme in multi-gateway based 6LoWPAN. In IEEE International Conference on, and Green Computing and Communications (GreenCom), IEEE and Cyber, Physical and Social Computing (CPSCom) Internet of Things (iThings) (pp. 87–94). IEEE.Google Scholar
  97. 97.
    Liu, X., Guo, J., Bhatti, G., Orlik, P. & Parsons, K. (2013). Load balanced routing for low power and Lossy networks. In IEEE Wireless Communications and Networking Conference (WCNC) (pp. 2238–2243). IEEE.Google Scholar
  98. 98.
    Guo, J., Liu, X., Bhatti, G., Orlik, P. & Parsons, K. (2013). Load balanced routing for low power and Lossy networks. Jan. 21, US Patent App. 13/746,173.Google Scholar
  99. 99.
    Tang, W., Wei, Z., Zhang, Z., & Zhang, B. (2014). Analysis and optimization strategy of multipath RPL based on the COOJA simulator. International Journal of Computer Science Issues (IJCSI), 11(5), 27–30.Google Scholar
  100. 100.
    Al-Kashoash, H., Hafeez, M. & Kemp, A. (2017). Congestion control for 6LoWPAN networks: A game theoretic framework. IEEE Internet of Things Journal.Google Scholar
  101. 101.
    Al-Kashoash, H. A., Amer, H. M., Mihaylova, L. & Kemp, A. H. (2017). Optimization based hybrid congestion alleviation for 6LoWPAN networks. IEEE Internet of Things Journal.Google Scholar
  102. 102.
    Al-Kashoash, H. A., Hassen, F., Kharrufa, H. & Kemp, A. H. (2018). Analytical modelling of congestion for 6LoWPAN networks. ICT Express.Google Scholar
  103. 103.
    Zheng, T., Ayadi, A. & Jiang, X. (2011). TCP over 6LoWPAN for industrial applications: An experimental study. In 4th IFIP International Conference on New Technologies, Mobility and Security (NTMS) (pp. 1–4). IEEE.Google Scholar
  104. 104.
    Ayadi, A., Maillé, P. & Ros, D. (2011). TCP over low-power and lossy networks: Tuning the segment size to minimize energy consumption. In 4th IFIP international conference on new technologies, mobility and security (NTMS), 2011 (pp. 1–5). IEEE.Google Scholar
  105. 105.
    Kim, H.-S., Im, H., Lee, M.-S., Paek, J., & Bahk, S. (2015). A measurement study of TCP over RPL in low-power and Lossy networks. Journal of Communications and Networks, 17(6), 647–655.CrossRefGoogle Scholar
  106. 106.
    Antoniou, P., Pitsillides, A., Blackwell, T., Engelbrecht, A., & Michael, L. (2013). Congestion control in wireless sensor networks based on bird flocking behavior. Computer Networks, 57(5), 1167–1191.CrossRefGoogle Scholar
  107. 107.
    Michopoulos, V., Guan, L., Oikonomou, G. & Phillips, I. (2011). A comparative study of congestion control algorithms in IPv6 wireless sensor networks. In International conference on distributed computing in sensor systems and workshops (DCOSS) (pp. 1–6). IEEE.Google Scholar
  108. 108.
    Al-Kashoash, H. A. A., Al-Nidawi, Y., & Kemp, A. H. (2016). Congestion analysis for low power and Lossy networks. In Accepted at Wireless Telecommunications Symposium (WTS), 2016 (1–6). IEEE.Google Scholar
  109. 109.
    Weldon, M. (2016). The future X network: A bell labs perspective. Boca Raton: CRC Press.CrossRefGoogle Scholar
  110. 110.
    Dunlap, J. (2011). From billing and technology convergence to ecosystem convergence: Why M2M matters to your business. Pipeline: Technology for Service Providers, 8(7), 14.Google Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Technical Institute/QurnaSouthern Technical UniversityBasraIraq
  2. 2.The Faculty of EngineeringAl-Mustansiriya UniversityBaghdadIraq
  3. 3.The Electronic and Electrical Engineering SchoolUniversity of LeedsLeedsUK

Personalised recommendations