Wireless Networks

, Volume 25, Issue 6, pp 3239–3250 | Cite as

Balancing energy efficiency and spectrum efficiency for lower error rate in bidirectional relay networks

  • Muhammad I. KhalilEmail author
  • Stevan M. Berber
  • Kevin W. Sowerby


A scheme for combining data rate, energy efficiency and relay location in bidirectional amplify-and-forward relay networks is proposed in this paper. The proposed scheme allows the energy consumption to be evaluated for all positions of a chosen relay along a line between the transmitter and the destination. Furthermore, the evaluated energy reduction is used to obtain the optimal balance between the energy efficiency (EE) and spectrum efficiency (SE). This balance enables the EE to increase significantly with the least loss of SE. Such a balance is then expressed with respect to the bit error rate. Numerical examples are provided to validate the analysis.


Amplify-and-forward relay Energy efficiency Relay location Spectral efficiency 


  1. 1.
    Host-Madsen, A., & Zhang, J. (2005). Capacity bounds and power allocation for wireless relay channels. IEEE Transactions on Information Theory, 51(6), 2020–2040.MathSciNetzbMATHGoogle Scholar
  2. 2.
    Proakis, J., & Salehi, M. (2007). Digital Communications. New York: McGraw-Hill Education.Google Scholar
  3. 3.
    Wong, W., Steele, R., Glance, B., & Horn, D. (1983). Time diversity with adaptive error detection to combat Rayleigh fading in digital mobile radio. IEEE Transactions on Communications, 31(3), 378–387.Google Scholar
  4. 4.
    Lagunas, M. A., Neira, A. I. P., Amin, M. G., & Vidal, J. (2000). Spatial processing for frequency diversity schemes. IEEE Transactions on Signal Processing, 48(2), 353–362.Google Scholar
  5. 5.
    Diggavi, S. N., Al-Dhahir, N., Stamoulis, A., & Calderbank, A. R. (2004). Great expectations: The value of spatial diversity in wireless networks. Proceedings of the IEEE, 92(2), 219–270.Google Scholar
  6. 6.
    Kwok, Y.-K. R., & Lau, V. K. N. (2007). Diversity Techniques (pp. 87–107). Hoboken: Wiley-IEEE Press.Google Scholar
  7. 7.
    Elsheikh, E., Wong, K.-K., Zhang, Y., & Cui, T. (2010). Chapter 10—User cooperative communications. In A. M. W. N. T. Hou (Ed.), Cognitive Radio Communications and Networks (pp. 261–305). Oxford: Academic Press.Google Scholar
  8. 8.
    Dohler, M., & Li, Y. (2010). Transparent relaying techniques. In Cooperative Communications (pp. 141–207). Wiley.Google Scholar
  9. 9.
    Hasna, M., & Alouini, M.-S. (2003). Outage probability of multihop transmission over Nakagami fading channels. IEEE Communications Letters, 7(5), 216–218.Google Scholar
  10. 10.
    Wang, Z., & Giannakis, G. (2003). A simple and general parameterization quantifying performance in fading channels. IEEE Transactions on Communications, 51(8), 1389–1398.Google Scholar
  11. 11.
    Hasna, M., & Alouini, M.-S. (2004). Harmonic mean and end-to-end performance of transmission systems with relays. IEEE Transactions on Communications, 52(1), 130–135.Google Scholar
  12. 12.
    Nguyen, H., Nguyen, H., & Le-Ngoc, T. (2011). Diversity analysis of relay selection schemes for two-way wireless relay networks. Wireless Personal Communications, 59(2), 173–189.Google Scholar
  13. 13.
    Yao, Y., Cai, X., & Giannakis, G. B. (2005). On energy efficiency and optimum resource allocation of relay transmissions in the low-power regime. IEEE Transactions on Wireless Communications, 4(6), 2917–2927.Google Scholar
  14. 14.
    Madan, R., Mehta, N. B., Molisch, A. F., & Zhang, J. (2008). Energy-efficient cooperative relaying over fading channels with simple relay selection. IEEE Transactions on Wireless Communications, 7(8), 3013–3025.Google Scholar
  15. 15.
    Bae, C., & Stark, W. (2009). End-to-end energy bandwidth tradeoff in multihop wireless networks. IEEE Transactions on Information Theory, 55(9), 4051–4066.MathSciNetzbMATHGoogle Scholar
  16. 16.
    Chen, C. L., Stark, W. E., & Chen, S. G. (2011). Energy-bandwidth efficiency tradeoff in mimo multi-hop wireless networks. IEEE Journal on Selected Areas in Communications, 29(8), 1537–1546.Google Scholar
  17. 17.
    Popovski, P., & Yomo, H. (2006). Bi-directional amplification of throughput in a wireless multi-hop network. In Vehicular Technology Conference, 2006. VTC 2006-Spring. IEEE 63rd (Vol. 2, pp. 588–593).Google Scholar
  18. 18.
    Chen, H., Li, G., & Cai, J. (2015). Spectralenergy efficiency tradeoff in full-duplex two-way relay networks. IEEE Systems Journal, PP(99), 1–10.Google Scholar
  19. 19.
    Chen, Y., Zhang, S., Xu, S., & Li, G. (2011). Fundamental trade-offs on green wireless networks. IEEE Communications Magazine, 49(6), 30–37.Google Scholar
  20. 20.
    Miao, G., Himayat, N., Li, Y. G., & Swami, A. (2009). Cross-layer optimization for energy-efficient wireless communications: A survey. Wireless Communications and Mobile Computing, 9(4), 529–542. (online).Google Scholar
  21. 21.
    Miao, G., Himayat, N., & Li, G. (2010). Energy-efficient link adaptation in frequency-selective channels. IEEE Transactions on Communications, 58(2), 545–554.Google Scholar
  22. 22.
    Xiong, C., Li, G., Zhang, S., Chen, Y., & Xu, S. (2011). Energy- and spectral-efficiency tradeoff in downlink OFDMA networks. IEEE Transactions on Wireless Communications, 10(11), 3874–3886.Google Scholar
  23. 23.
    Huang, R., Feng, C., Zhang, T., & Wang, W. (2011). Energy-efficient relay selection and power allocation scheme in af relay networks with bidirectional asymmetric traffic. In 2011 14th International Symposium on Wireless Personal Multimedia Communications (WPMC) (pp. 1–5).Google Scholar
  24. 24.
    Sun, C., & Yang, C. (2012). Energy efficiency analysis of one-way and two-way relay systems. EURASIP Journal on Wireless Communications and Networking, 2012(1), 1–18. (online).Google Scholar
  25. 25.
    Sun, C., Cen, Y., & Yang, C. (2013). Energy efficient OFDM relay systems. IEEE Transactions on Communications, 61(5), 1797–1809.Google Scholar
  26. 26.
    Amin, O., Bavarian, S., & Lampe, L. (2012). Cooperative techniques for energy-efficient wireless communications. In E. Hossain, V. K. Bhargava, & G. P. Fettweis (Eds.), Green Radio Communication Networks (pp. 125–149). Cambridge: Cambridge University Press. (Cambridge books online).Google Scholar
  27. 27.
    Wei, L., Hu, R., Qian, Y., & Wu, G. (2016). Energy efficiency and spectrum efficiency of multihop device-to-device communications underlaying cellular networks. IEEE Transactions on Vehicular Technology, 65(1), 367–380.Google Scholar
  28. 28.
    Fang, Z., Liang, F., Li, L., & Jin, L. (2014). Performance analysis and power allocation for two-way amplify-and-forward relaying with generalized differential modulation. IEEE Transactions on Vehicular Technology, 63(2), 937–942.Google Scholar
  29. 29.
    Song, K., Ji, B., Huang, Y., Xiao, M., & Yang, L. (2015). Performance analysis of antenna selection in two-way relay networks. IEEE Transactions on Signal Processing, 63(10), 2520–2532.MathSciNetzbMATHGoogle Scholar
  30. 30.
    Yang, L., Qaraqe, K., Serpedin, E., & Gao, X. (2015). Performance analysis of two-way relaying networks with the n th worst relay selection over various fading channels. IEEE Transactions on Vehicular Technology, 64(7), 3321–3327.Google Scholar
  31. 31.
    Luo, M., Villemaud, G., Gorce, J. M., & Zhang, J. (2012). Realistic prediction of BER and AMC for indoor wireless transmissions. IEEE Antennas and Wireless Propagation Letters, 11, 1084–1087.Google Scholar
  32. 32.
    Khalil, M., Berber, S., & Sowerby, K. (2017). High SNR approximation for performance analysis of two-way multiple relay networks. Physical Communication, 24(Supplement C), 62–70.Google Scholar
  33. 33.
    Rankov, B., & Wittneben, A. (2007). Spectral efficient protocols for half-duplex fading relay channels. IEEE Journal on Selected Areas in Communications, 25(2), 379–389.Google Scholar
  34. 34.
    Rao, B. (2009). A First Course in Probability and Statistics. Singapore: World Scientific.zbMATHGoogle Scholar
  35. 35.
    Khalil, M. I., Berber, S. M., & Sowerby, K. W. (2016). Energy efficiency and spectrum efficiency trade-off over optimal relay location in bidirectional relay networks. In 2016 IEEE-APS Topical Conference on Antennas and Propagation in Wireless Communications (APWC) (pp. 298–302).Google Scholar
  36. 36.
    de Chaves, F., Cavalcanti, F., de Oliveira Neto, R., & Santos, R. (2009). Power control for wireless networks: Conventional and QoS-flexible approaches. In F. R. P. Cavalcanti & S. Andersson (Eds.), Optimizing Wireless Communication Systems (pp. 3–49). New York: Springer.Google Scholar
  37. 37.
    Ahmed, E., & Eltawil, A. (2015). All-digital self-interference cancellation technique for full-duplex systems. IEEE Transactions on Wireless Communications, 14(7), 3519–3532.Google Scholar
  38. 38.
    Hasna, M., & Alouini, M.-S. (2003). End-to-end performance of transmission systems with relays over Rayleigh-fading channels. IEEE Transactions on Wireless Communications, 2(6), 1126–1131.Google Scholar
  39. 39.
    Louie, R. H., Li, Y., Suraweera, H., & Vucetic, B. (2009). Performance analysis of beamforming in two hop amplify and forward relay networks with antenna correlation. IEEE Transactions on Wireless Communications, 8(6), 3132–3141.Google Scholar
  40. 40.
    Khalil, M. I., Berber, S. M., & Sowerby, K. W. (2017). Precise error rate analysis of wireless relay networks. Wireless Personal Communications, 95(4), 5081–5096.Google Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  • Muhammad I. Khalil
    • 1
    Email author
  • Stevan M. Berber
    • 1
  • Kevin W. Sowerby
    • 1
  1. 1.The University of AucklandAucklandNew Zealand

Personalised recommendations