Wireless Networks

, Volume 25, Issue 6, pp 3047–3062 | Cite as

Pulse-level beam-switching for terahertz networks

  • Jian LinEmail author
  • Mary Ann Weitnauer


Communication in Terahertz (THz) band is envisioned as a promising technology to meet the ever-growing data rate demand, and to enable new applications in both nano-scale and macro-scale wireless paradigms. In this study, we propose the first system-level design that is suitable for THz communication in macro-scale range with 100+ Gbps data rate. The design is based on the proposed terahertz pulse-level beam-switching with energy control (TRPLE), and motivated by the rise in Graphene-based electronics, which include not only compact generator and detector for pulse communication, but also the capability of beam scanning aided with nano-antenna-arrays. The very high path loss seen in THz wireless channel requires the use of narrow beam to reach longer transmission ranges. On the other hand, impulse radio that emits femtosecond-long pulses allows the beam direction to steer at pulse-level, rather than at packet-level. For TRPLE, we mathematically analyze the data rate for an arbitrary wireless link under the THz channel characteristics and the energy modulation scheme. Then, a novel optimization model is formulated to solve the parameters of the inter-pulse separation and the inter-symbol separation, in order to maximize the data rate while meeting the interference requirement. With the optimization, the data rate of 167 Gbps is shown achievable for most users in 20-m range. A MAC protocol framework is then presented to harness the benefits of the pulse separation optimization.


Terahertz band Beam-switching Medium access control Pulse communication 



This work was funded by the US National Science Foundation (NSF) under Grant No. CCF-1349828.


  1. 1.
    Akyildiz, I. F., & Jornet, J. M. (2016). Realizing ultra-massive mimo (1024 × 1024) communication in the (0.06-10) terahertz band. Nano Communication Networks, 8, 46–54.CrossRefGoogle Scholar
  2. 2.
    Akyildiz, I. F., Jornet, J. M., & Pierobon, M. (2011). Nanonetworks: A new frontier in communications. Communications of the ACM, 54(11), 84–89.CrossRefGoogle Scholar
  3. 3.
    Akyildiz, I. F., Jornet, J. M., & Han, C. (2014). Teranets: Ultra-broadband communication networks in the terahertz band. IEEE Wireless Communications, 21(4), 130–135.CrossRefGoogle Scholar
  4. 4.
    An, X., Venkatesha Prasad, R., & Niemegeers, I. (2011). Impact of antenna pattern and link model on directional neighbor discovery in 60 GHz networks. IEEE Transactions on Wireless Communications, 10(5), 1435–1447.CrossRefGoogle Scholar
  5. 5.
    Beckmann, P., & Spizzichino, A. (1987). The scattering of electromagnetic waves from rough surfaces (p. 1). Norwood: Artech House Inc.zbMATHGoogle Scholar
  6. 6.
    Cacciapuoti, A. S. (2017). Mobility-aware user association for 5G mmWave networks. IEEE Access, 5, 21497–21507.CrossRefGoogle Scholar
  7. 7.
    Cacciapuoti, A. S., Subramanian, R., Chowdhury, K. R., & Caleffi, M. (2017). Software-defined network controlled switching between millimeter wave and terahertz small cells.
  8. 8.
    Choudhury, R., Yang, X., Ramanathan, R., & Vaidya, N. (2006). On designing MAC protocols for wireless networks using directional antennas. IEEE Transactions on Mobile Computing, 5(5), 477–491.CrossRefGoogle Scholar
  9. 9.
    Esquius-Morote, M., Gomez-Diaz, J., & Perruisseau-Carrier, J. (2014). Sinusoidally modulated graphene leaky-wave antenna for electronic beamscanning at THz. IEEE Transactions on Terahertz Science and Technology, 4(1), 116–122.CrossRefGoogle Scholar
  10. 10.
    Federici, J., & Moeller, L. (2010). Review of terahertz and subterahertz wireless communications. Journal of Applied Physics, 107(11), 111101–111122.CrossRefGoogle Scholar
  11. 11.
    Huang, K. C., & Wang, Z. (2011). Terahertz terabit wireless communication. IEEE Microwave Magazine, 12(4), 108–116.CrossRefGoogle Scholar
  12. 12.
    Jornet, J., & Akyildiz, I. (2011a). Channel modeling and capacity analysis for electromagnetic wireless nanonetworks in the terahertz band. IEEE Transactions on Wireless Communications, 10(10), 3211–3221.CrossRefGoogle Scholar
  13. 13.
    Jornet, J., & Akyildiz, I. (2011b). Information capacity of pulse-based wireless nanosensor networks. In IEEE SECON (pp. 80–88).Google Scholar
  14. 14.
    Jornet, J. M., & Akyildiz, I. F. (2013). Graphene-based plasmonic nano-antenna for terahertz band communication in nanonetworks. IEEE Journal on Selected Areas in Communications, 31(12), 685–694.CrossRefGoogle Scholar
  15. 15.
    Knap, W., Teppe, F., Dyakonova, N., Coquillat, D., & Łusakowski, J. (2008). Plasma wave oscillations in nanometer field effect transistors for terahertz detection and emission. Journal of Physics: Condensed Matter, 20(38), 384205.Google Scholar
  16. 16.
    Koch, M. (2007). Terahertz communications: A 2020 vision. In Terahertz frequency detection and identification of materials and objects (pp. 325–338). Netherlands: Springer.Google Scholar
  17. 17.
    Korakis, T., Jakllari, G., & Tassiulas, L. (2008). CDR-MAC: A protocol for full exploitation of directional antennas in ad hoc wireless networks. IEEE Transactions on Mobile Computing, 7(2), 145–155.CrossRefGoogle Scholar
  18. 18.
    Liberti, J., & Rappaport, T. (1996). A geometrically based model for line-of-sight multipath radio channels. In Vehicular technology conference (pp. 844–848, Vol. 2).Google Scholar
  19. 19.
    Lin, C., & Li, G. Y. L. (2016). Terahertz communications: An array-of-subarrays solution. IEEE Communications Magazine, 54(12), 124–131.CrossRefGoogle Scholar
  20. 20.
    Lin, J., & Weitnauer, M. (2014). Pulse-level beam-switching MAC with energy control in picocell terahertz networks. In Proceedings of IEEE GLOBECOM (pp. 4460–4465).Google Scholar
  21. 21.
    Llatser, I., Cabellos-Aparicio, A., Alarcn, E., Jornet, J. M., Mestres, A., Lee, H., et al. (2015). Scalability of the channel capacity in graphene-enabled wireless communications to the nanoscale. IEEE Transactions on Communications, 63(1), 324–333.Google Scholar
  22. 22.
    Mudumbai, R., Singh, S., & Madhow, U. (2009). Medium access control for 60 GHz outdoor mesh networks with highly directional links. In INFOCOM 2009 (pp. 2871–2875). IEEE.Google Scholar
  23. 23.
    Ning, J., Kim, T. S., Krishnamurthy, S. V., & Cordeiro, C. (2011). Directional neighbor discovery in 60 GHz indoor wireless networks. Performance Evaluation, 68(9), 897–915.CrossRefGoogle Scholar
  24. 24.
    Niu, Y., Li, Y., Jin, D., Su, L., & Vasilakos, A. V. (2015a). A survey of millimeter wave communications (mmWave) for 5G: Opportunities and challenges. Wireless Networks, 21(8), 2657–2676.CrossRefGoogle Scholar
  25. 25.
    Niu, Y., Li, Y., Jin, D., Su, L., & Wu, D. (2015b). Blockage robust and efficient scheduling for directional mmWave WPANs. IEEE Transactions on Vehicular Technology, 64(2), 728–742.CrossRefGoogle Scholar
  26. 26.
    Piesiewicz, R., Kleine-Ostmann, T., Krumbholz, N., Mittleman, D., Koch, M., & Kurner, T. (2005). Terahertz characterisation of building materials. Electronics Letters, 41(18), 1002–1004.CrossRefGoogle Scholar
  27. 27.
    Piesiewicz, R., Kleine-Ostmann, T., Krumbholz, N., Mittleman, D., Koch, M., Schoebel, J., et al. (2007). Short-range ultra-broadband terahertz communications: Concepts and perspectives. IEEE Antennas and Propagation Magazine, 49(6), 24–39.CrossRefGoogle Scholar
  28. 28.
    Ramanathan, R., Redi, J., Santivanez, C., Wiggins, D., & Polit, S. (2005). Ad hoc networking with directional antennas: A complete system solution. IEEE Journal on Selected Areas in Communications, 23(3), 496–506.CrossRefGoogle Scholar
  29. 29.
    Rappaport, T. S., MacCartney, G. R., Samimi, M. K., & Sun, S. (2015). Wideband millimeter-wave propagation measurements and channel models for future wireless communication system design. IEEE Transactions on Communications, 63(9), 3029–3056.CrossRefGoogle Scholar
  30. 30.
    Roh, W., Seol, J. Y., Park, J., Lee, B., Lee, J., Kim, Y., et al. (2014). Millimeter-wave beamforming as an enabling technology for 5G cellular communications: Theoretical feasibility and prototype results. IEEE Communications Magazine, 52(2), 106–113.CrossRefGoogle Scholar
  31. 31.
    Singh, S., Ziliotto, F., Madhow, U., Belding, E., & Rodwell, M. (2009). Blockage and directivity in 60 GHz wireless personal area networks: From cross-layer model to multihop MAC design. IEEE Journal on Selected Areas in Communications, 27(8), 1400–1413.CrossRefGoogle Scholar
  32. 32.
    Tamagnone, M., Gomez-Diaz, J., Mosig, J. R., & Perruisseau-Carrier, J. (2012). Reconfigurable terahertz plasmonic antenna concept using a graphene stack. Applied Physics Letters, 101(21), 214102.CrossRefGoogle Scholar
  33. 33.
    Vicarelli, L., Vitiello, M., Coquillat, D., Lombardo, A., Ferrari, A., Knap, W., et al. (2012). Graphene field-effect transistors as room-temperature terahertz detectors. Nature Materials, 11(10), 865–871.CrossRefGoogle Scholar
  34. 34.
    Vien, Q. T., Agyeman, M. O., Le ,T. A., & Mak, T. (2017). On the nanocommunications at THz band in graphene-enabled wireless network-on-chip. Mathematical Problems in Engineering (Article ID 9768604).Google Scholar
  35. 35.
    Yildirim, F., & Liu, H. (2009). A cross-layer neighbor-discovery algorithm for directional 60-GHz networks. IEEE Transactions on Vehicular Technology, 58(8), 4598–4604.CrossRefGoogle Scholar
  36. 36.
    Yiu, C., & Singh, S. (2009). Empirical capacity of mmWave WLANs. IEEE Journal on Selected Areas in Communications, 27(8), 1479–1487.CrossRefGoogle Scholar
  37. 37.
    Yu, Y. J., Zhao, Y., Ryu, S., Brus, L. E., Kim, K. S., & Kim, P. (2009). Tuning the graphene work function by electric field effect. Nano Letters, 9(10), 3430–3434.CrossRefGoogle Scholar
  38. 38.
    Zhang, X., Zhou, S., Wang, X., Niu, Z., Lin, X., Zhu, D., et al. (2012). Improving network throughput in 60 GHz WLANs via multi-AP diversity. In 2012 IEEE International Conference on Communications (ICC) (pp. 4803–4807). IEEE.Google Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  1. 1.IBM CorporationAtlantaGeorgia
  2. 2.School of Electrical and Computer EngineeringGeorgia Institute of TechnologyAtlantaGeorgia

Personalised recommendations