Advertisement

Wireless Networks

, Volume 25, Issue 4, pp 1913–1929 | Cite as

A hierarchical binary quadtree index for spatial queries

  • Kwangjin ParkEmail author
Article

Abstract

An index structure adequate for broadcasting environments must consider the order of data delivery, index size, and selective tuning. This paper introduces a light-weight bit sequence grid-based spatial index, referred to as a binary quadtree, which allows for the sequential search and selective tuning of data. Then, the paper suggests a search algorithm that can efficiently search spatial objects. The results from theoretical analysis and experiments show that the proposed algorithm with the binary quadtree is fast and energy efficient in both range queries and k-nearest neighbor queries.

Keywords

Location-based services Mobile computing Spatial index 

Notes

Acknowledgements

This paper was supported by Wonkwang university in 2017.

References

  1. 1.
    Pai, N., & Li, Y. (2014). Competing advertising and pricing strategies for location-based commerce. In Proceedings of European conference on system science (ECIS).Google Scholar
  2. 2.
    Zheng, B., Xu, J., Lee, W., & Lee, L. (2006). Grid-partition index: A hybrid method for nearest-neighbor queries in wireless location-based services. VLDB Journal, 15, 21–39.CrossRefGoogle Scholar
  3. 3.
    Park, K., & Song, D. (2016). A partial index for distributed broadcasting in wireless mobile networks. Information Sciences (INS), 348, 142–152.CrossRefGoogle Scholar
  4. 4.
    Wang, Y., Xu, C., Gu, Y., Chen, M., & Yu, G. (2013). Spatial query processing in road networks for wireless data broadcast. Wireless Networks (WINET), 19(4), 477–494.CrossRefGoogle Scholar
  5. 5.
    Sun, W., Chen, C., Zheng, B., Chen, C., & Liu, P. (2015). An air index for spatial query processing in road networks. IEEE Transactions on Knowledge and Data Engineering, 27(2), 382–395.CrossRefGoogle Scholar
  6. 6.
    Xiong, Y., Deng, Y., Wang, W., & Ma, J. (2014). Phoenix: A collaborative location-based notification system for mobile networks. Mathematical Problems in Engineering, 307498, 12.Google Scholar
  7. 7.
    Gedik, B., Singh, A., & Liu, L. (2004) Energy efficient exact kNN search in wireless broadcast environments. In ACM international workshop on geographic information systems (GIS) (pp. 137–146).Google Scholar
  8. 8.
    Zheng, B., Lee, W., Lee, K., Lee, D., & Shao, M. (2009). A distributed spatial index for error-prone wireless data broadcast. VLDB Journal, 18, 959–986.CrossRefGoogle Scholar
  9. 9.
    Acharya, S., Alonso, R., Franklin, M., & Zdonik, S. (1995) Broadcast disks: Data management for asymmetric communications environments. In Proceedings of the international conference on management of data (SIGMOD) (pp. 199–210)Google Scholar
  10. 10.
    Imielinski, R., Viswanathan, S., & Badrinath, B. (1997). Data on air-organization and access. IEEE Transactions on Knowledge and Data Engineering (TKDE), 9(3), 353–372.CrossRefGoogle Scholar
  11. 11.
    Imielinski, T., Viswanathan, S., & Badrinath, B. (1994). Energy efficiency indexing on air. In Proceedings of the international conference on management of data (SIGMOD) (pp. 25–36)Google Scholar
  12. 12.
    Park, K., & Valduriez, P. (2013). A hierarchical grid index (HGI), spatial queries in wireless data broadcasting. Distributed and Parallel Databases (DAPD), 31(3), 413–446.CrossRefGoogle Scholar
  13. 13.
    Acharya, S., Franklin, M., & Zdonik, S. (1995). Dissemination-based data delivery using broadcast disks. IEEE Personal Communications, 2(6), 50–60.CrossRefGoogle Scholar
  14. 14.
    Liu, C., & Lin, K. (2007). Disseminating dependent data in wireless broadcast environments. Distributed and Parallel Databases (DAPD), 22(1), 1–25.CrossRefGoogle Scholar
  15. 15.
    Mouratidis, K., Bakiras, S., & Papadias, D. (2009). Continuous monitoring of spatial queries in wireless broadcast environments. IEEE Transactions on Mobile Computing (TMC), 8(10), 1297–1311.CrossRefGoogle Scholar
  16. 16.
    Nicopolitidis, P., Papadimitriou, G., & Pomportsis, A. (2006). Exploiting locality of demand to improve the performance of wireless data broadcasting. IEEE Transactions on Vehicular Technology (TVT), 55(4), 1347–1361.CrossRefGoogle Scholar
  17. 17.
    Li, Y., Li, J., Shu, L., Li, Q., Li, G., & Yang, F. (2014). Searching continuous nearest neighbors in road networks on the air. Information Systems (IS), 42, 177–194.CrossRefGoogle Scholar
  18. 18.
    Zhong, J., Wu, W., Shi, Y., & Gao, X. (2011) Energy-efficient tree-based indexing schemes for information retrieval in wireless data broadcast. In Proceedings of database systems for advanced applications (DASFAA) (pp. 335–351)Google Scholar
  19. 19.
    Xu, J., Lee, W., & Tang, X. (2004). Exponential index: A parameterized distributed indexing scheme for data on air. In Proceedings of international conference on. mobile systems, applications, and services (MobiSys) (pp. 153–164)Google Scholar
  20. 20.
    Shen, J., & Chang, Y. (2008). An efficient nonuniform index in the wireless broadcast environments. Journal of Systems and Software (JSS), 81, 2091–2103.CrossRefGoogle Scholar
  21. 21.
    Kellaris, G., & Mouratidis, K. (2010). Shortest path computation on air indexes. Proceedings of the VLDB Endowment (PVLDB), 3(1), 747–757.CrossRefGoogle Scholar
  22. 22.
    Park, K., & Choo, H. (2007). Energy-efficient data dissemination schemes for nearest neighbor query processing. IEEE Transactions on Computers, 56(6), 754–768.MathSciNetCrossRefzbMATHGoogle Scholar
  23. 23.
    Hambrusch, S., Liu, C., Aref, W., & Prabhakar, S. (2001) Query processing in broadcasted spatial index trees. In Proceedings of advances in spatial and temporal databases (SSTD) (pp. 502–521)Google Scholar
  24. 24.
    Liu, C., & Fu, S. (2008). Effective protocols for kNN search on broadcast multi-dimensional index trees. Information Systems (IS), 33, 18–35.CrossRefGoogle Scholar
  25. 25.
    Nagarkar, P., Candan, K. S., & Bhat, A. (2015). Compressed spatial hierarchical bitmap (cSHB) indexes for efficiently processing spatial range query workloads. Proceedings of the VLDB Endowment (PVLDB), 8(12), 1382–1393.CrossRefGoogle Scholar
  26. 26.
    Galdames, P., & Cai, Y. (2012). Efficient processing of location-cloaked queries. In Proceedings of IEEE conference on computer communications (INFOCOM) (pp. 2480–2488).Google Scholar
  27. 27.
    Guttman, A. (1984). R-trees: A dynamic index structure for spatial searching. In Proceedings of the international conference on management of data (SIGMOD) (pp. 47–57).Google Scholar
  28. 28.
    Kellaris, G., & Mouratidis, K. (2010). Shortest path computation on air indexes. In International conference on very large data bases (VLDB) (pp. 747–757)Google Scholar
  29. 29.
    Li, Y., Shu, L., Zhu, R., & Li, L. (2017). A novel distributed air index for efficient spatial query processing in road sensor networks on the air. International Journal on Communication Systems, 30(5), 1–23.CrossRefGoogle Scholar
  30. 30.
    Shen, J., & Jian, M. (2017). Spatial query processing for skewed access patterns in non-uniform wireless data broadcast environments. International Journal of Ad Hoc and Ubiquitous Computing, 25(1/2), 4–16.CrossRefGoogle Scholar
  31. 31.
    Song, D., & Park, K. (2016). A partial index for distributed broadcasting in wireless mobile networks. Information Sciences, 348, 142–152.CrossRefGoogle Scholar
  32. 32.
    Luby, M. (2012). Best practices for mobile broadcast delivery and playback of multimedia content. In Proceedings of IEEE international symposium on broadband multimedia systems and broadcasting (BMSB) (pp. 1–7).Google Scholar
  33. 33.
    Camp, T., Boleng, J., & Davies, V. (2002). A survey of mobility models for ad hoc network research. Wireless Communications and Mobile Computing (WCMC), 2(5), 483–502.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Department of Information Communication EngineeringWonkwang UniversityIksanKorea

Personalised recommendations