Link state opportunistic routing for multihop wireless networks

  • Cédric GueguenEmail author
  • Philippe Fabian
  • Xavier Lagrange


Enhancing the quality of service is the crucial issue of future wireless networks. In this paper, we propose a new multihop wireless routing protocol inspired by opportunistic resource allocation strategies that take into account the variability of the radio conditions due to path loss, shadowing and multipath fading. Thanks to this knowledge, our proposition dynamically adapts the selected path accross time. The adaptation is function of each link state and the amount of channel information available. This allows to improve system performance in terms of delay and throughput. This solution can be used in all multihop wireless contexts but can have a special interest in wireless coverage zone extension context. Simulation results will show that the proposed routing protocol greatly outperforms the other existing protocols such as ad-hoc on-demand distance vector, optimized link state routing and extremely opportunistic routing protocols reducing mean packet delays by more than 50% in several scenarii.


Wireless network Multihop network Opportunistic routing Multipath fading Quality of service 


  1. 1.
    Gueguen, C., Rachedi, A., & Guizani, M. (2013). Incentive scheduler algorithm for cooperation and coverage extension in wireless networks. IEEE Transactions on Vehicular Technology, 62(2), 797–808.CrossRefGoogle Scholar
  2. 2.
    Gonzalez, A., Kuehlmorgen, S., Festag, A., & Fettweis, G. (2017). Resource allocation for block-based multi-carrier systems considering qos requirements. In GLOBECOM 2017—2017 IEEE global communications conference (pp 1–7).Google Scholar
  3. 3.
    Goldsmith, A. (2005). Wireless cmmunications. Cambridge: Cambridge University Press.CrossRefGoogle Scholar
  4. 4.
    Clausen, T., & Jacquet, P. (2003). RFC 3626: Optimized link state routing protocol OLSR. IETF, 4, 9.Google Scholar
  5. 5.
    Clausen, T., Dearlove, C., Jacquet, P., & Herberg, U. (2014). Rfc7181: The optimized link state routing protocol version 2. IETF-Proposed Standard RFC, 7181, 81.Google Scholar
  6. 6.
    Jacquet, P., Muhlethaler, P., Clausen, T., Laouiti, A., Qayyum, A., & Viennot, L. (2001). Optimized link state routing protocol for ad hoc networks. In Proceedings of the IEEE international multi topic conference, 2001. IEEE INMIC 2001. technology for the 21st century (pp 62–68).Google Scholar
  7. 7.
    Das, S. R., Perkins, C. E., & Belding-Royer, E. M. (2003). Ad hoc on-demand distance vector (AODV) routing. RFC 3561.
  8. 8.
    Wong, C. Y., & Cheng, R. S. (1999). Multiuser OFDM with adaptive subcarrier, bit, and power allocation. IEEE Journal on Selected Areas in Communications, 17(10), 1747–1758.CrossRefGoogle Scholar
  9. 9.
    Viswanath, P., Tse, D. N. C., & Laroia, R. (2002). Opportunistic beamforming using dumb antennas. IEEE Transactions on Information Theory, 48, 1277–1294.MathSciNetCrossRefzbMATHGoogle Scholar
  10. 10.
    Gueguen, C., & Baey, S. (2009). A fair opportunistic access scheme for multiuser OFDM wireless networks. Journal on Wireless Communications and Networking. European Association for Signal Processing (EURASIP). Special issue: Fairness in Radio Resource Management for Wireless Network.Google Scholar
  11. 11.
    Costantino, G., Maiti, R. R., Martinelli, F., & Santi, P. (2016). Losero: A locality sensitive routing protocol in opportunistic networks. In Proceedings of the 31st annual ACM symposium on applied computing (pp. 644–650). ACM.Google Scholar
  12. 12.
    Biswas, S., & Morris, R. (2005). Exor: Opportunistic multi-hop routing for wireless networks. SIGCOMM Computer Communication Review, 35(4), 133–144. Scholar
  13. 13.
    Athanasopoulou, E., Bui, L. X., Ji, T., Srikant, R., & Stolyar, A. (2013). Back-pressure-based packet-by-packet adaptive routing in communication networks. IEEE/ACM Transactions on Networking, 21(1), 244–257.CrossRefGoogle Scholar
  14. 14.
    Mao, X., Tang, S., Xu, X., Li, X. Y., & Ma, H. (2011). Energy-efficient opportunistic routing in wireless sensor networks. IEEE Transactions on Parallel and Distributed Systems, 22(11), 1934–1942.CrossRefGoogle Scholar
  15. 15.
    Darehshoorzadeh, A., Cerda-Alabern, L., & Pla, V. (2011). Modeling and comparison of candidate selection algorithms in opportunistic routing. Computer Networks, 55(13), 2886–2898.CrossRefGoogle Scholar
  16. 16.
    Ostovari, P., Wu, J., & Khreishah, A. (2017). Cooperative internet access using helper nodes and opportunistic scheduling. IEEE Transactions on Vehicular Technology, 66(7), 6439–6448.CrossRefGoogle Scholar
  17. 17.
    Liu, F., Riihijrvi, J., & Petrova, M. (2017). Analysis of proportional fair scheduling under bursty on-off traffic. IEEE Communications Letters, 21(5), 1175–1178.CrossRefGoogle Scholar
  18. 18.
    Chen, W., Lea, C. T., He, S., & XuanYuan, Z. (2017). Opportunistic routing and scheduling for wireless networks. IEEE Transactions on Wireless Communications, 16(1), 320–331.CrossRefGoogle Scholar
  19. 19.
    Huhtonen, A. (2004). Comparing AODV and OLSR routing protocols. Telecommunications Software and Multimedia, 1–9.Google Scholar
  20. 20.
    Eom, H. (2008). Information-dynamics-conscious development of routing software: A case of routing software that improves link-state routing based on future link-delay-information estimation. The Computer Journal, 51(2), 144–161.CrossRefGoogle Scholar
  21. 21.
    Ade, S., & Tijare, P. (2010). Performance comparison of AODV, DSDV, OLSR and DSR routing protocols in mobile ad hoc networks. International Journal of Information Technology and Knowledge Management, 2(2), 545–548.Google Scholar
  22. 22.
    Zhong, Z., & Nelakuditi, S. (2007). On the efficacy of opportunistic routing. In 4th annual IEEE communications society conference on sensor, mesh and ad hoc communications and networks, 2007. SECON’07 (pp. 441–450). IEEE.Google Scholar
  23. 23.
    Truman, T. E., & Brodersen, R. W. (1997). A measurement-based characterization of the time variation of an indoor wireless channel. In Proceedings of the IEEE international universal personal communications record (ICUPC) (Vol. 1, pp. 25–32).Google Scholar
  24. 24.
    Brassard, G., & Bratley, P. (1996). Fundamentals of algorithmics (Vol. 33). Englewood Cliffs: Prentice Hall.zbMATHGoogle Scholar
  25. 25.
    Proakis, J. G. (1995). Digital communications (3rd ed.). New York: McGraw-Hill.zbMATHGoogle Scholar
  26. 26.
    Anchun, W., Liang, X., Xiiin, Z. S. X., & Yan, Y. (2003). Dynamic resource management in the fourth generation wireless systems. In Proceedings of the IEEE international conference on communication technology (ICCT) (Vol. 2, pp. 1095–1098).Google Scholar
  27. 27.
    Gueguen, C., & Manini, M. (2018). Fairness-energy-throughput optimized trade-off in wireless networks. In ICNC 2018-international conference on computing, networking and communications (pp. 1–8). Maui: IEEE.

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  1. 1.IRISAUniversity of Rennes 1RennesFrance

Personalised recommendations