Wireless Networks

, Volume 25, Issue 4, pp 1895–1912 | Cite as

Impact of relative speed on node vicinity dynamics in VANETs

  • Dianne S. V. MedeirosEmail author
  • Dayro A. B. Hernandez
  • Miguel Elias M. Campista
  • Aloysio de Castro P. Pedroza


Communication protocols generally rely on the existence of very long multihop paths to reach distant nodes. They disregard, however, how often such paths indeed occur, and how long they persist, especially in highly dynamic mobile networks. In this direction, this paper evaluates quantitatively the influence of node relative speed on path establishment and maintenance, using real and synthetic vehicular network traces. We propose a methodology for vehicular network analysis where both relative speeds and hop distances are used as parameters to characterize node vicinity. Results show that contact opportunities highly depend on the relative speed and the hop distance between nodes. In sparser scenarios, the number of contacts between nodes separated by more than 3 hops or even between neighbors with relative speed above 40 km/h is negligible. This confirms the intuition that contacts at lower relative speeds and at few hop distances happen more often. In addition, contacts last longer as the number of hops between nodes decreases. Nevertheless, we can still find multihop paths able to transmit messages at high relative speeds, even though less often. We also demonstrate that relative speeds reduce the number of useful contacts more severely when compared to the hop distance. For last, we show that it is possible to increase the number of successful packet transmissions by simply applying the outcomes of this work, without any sophisticated model, avoiding the waste of resources, such as energy and bandwidth.


Relative speeds VANETs Vicinity analysis 



The authors would like to thank CAPES, CNPq, and FAPERJ for their support.


  1. 1.
    Olariu, S., Yan, G., & Salleh, S. (2010). A probabilistic routing protocol in VANET. IJMCMC, 2(4), 21.Google Scholar
  2. 2.
    Belblidia, N., Sammarco, M., Costa, L. H. M. K., & de Amorim, M. D. (2015). EPICS: Fair opportunistic multi-content dissemination. IEEE Transactions on Mobile Computing, 14(9), 1847.CrossRefGoogle Scholar
  3. 3.
    Sommer, C., & Dressler, F. (2008). Progressing toward realistic mobility models in VANET simulations. IEEE Communications Magazine, 46(11), 132.CrossRefGoogle Scholar
  4. 4.
    Harri, J., Filali, F., & Bonnet, C. (2009). Mobility models for vehicular ad hoc networks: A survey and taxonomy. IEEE Communications Surveys and Tutorials, 11(4), 19.CrossRefGoogle Scholar
  5. 5.
    Gaikwad, D. S., & Zaveri, M. (2011). VANET routing protocols and mobility models: A survey. In D. C. Wyld, M. Wozniak, N. Chaki, N. Meghanathan, D. Nagamalai (Eds.), Trends in Network and Communications. Communications in Computer and Information Science (pp. 334–342). Berlin, Heidelberg: Springer.Google Scholar
  6. 6.
    Spaho, E., Barolli, L., Mino, G., Xhafa, F., & Kolici, V. (2011). VANET simulators: A survey on mobility and routing protocols. In Proceedings of BWCCA ’11 (pp. 1–10).Google Scholar
  7. 7.
    Zeadally, S., Hunt, R., Chen, Y. S., Irwin, A., & Hassan, A. (2012). Vehicular ad hoc networks (VANETS): Status, results, and challenges. Telecommunication Systems, 50(4), 217.CrossRefGoogle Scholar
  8. 8.
    Madi, S., & Al-Qamzi, H. (2013). A survey on realistic mobility models for vehicular ad hoc networks (VANETs). In Proceeings of ICNSC ’13 (pp. 333–339).Google Scholar
  9. 9.
    Conan, V., Leguay, J., & Friedman, T. (2007). Characterizing pairwise inter-contact patterns in delay tolerant networks. In Proceedings of Autonomics ’07 (pp. 19:1–19:9).Google Scholar
  10. 10.
    Gonzalez, M. C., Hidalgo, C. A., & Barabasi, A. L. (2008). Understanding individual human mobility patterns. Nature, 453(7196), 779. Scholar
  11. 11.
    Passarella, A., & Conti, M. (2011). Characterising aggregate inter-contact times in heterogeneous opportunistic networks. In Proceedings of NETWORKING’11 (pp. 301–313)Google Scholar
  12. 12.
    Rezende, C. G., Pazzi, R. W., & Boukerche, A. (2009). An efficient neighborhood prediction protocol to estimate link availability in VANETs. In Proceedings of MobiWAC ’09 (pp. 83–90).Google Scholar
  13. 13.
    Taleb, T., Sakhaee, E., Jamalipour, A., Hashimoto, K., Kato, N., & Nemoto, Y. (2007). A stable routing protocol to support ITS services in VANET networks. IEEE Transactions on Vehicular Technology, 56(6), 3337.CrossRefGoogle Scholar
  14. 14.
    Gerharz, M., de Waal, C., Frank, M., & Martini, P. (2002). Link stability in mobile wireless ad hoc networks. In Proceedings of LCN ’02 (pp. 30–39).Google Scholar
  15. 15.
    Menouar, H., Lenardi, M., & Filali, F. (2007). Movement prediction-based routing (MOPR) concept for position-based routing in vehicular networks. In Proceedings of VTC ’07 (pp. 2101–2105).Google Scholar
  16. 16.
    Barghi, S., Benslimane, A., & Assi, C. (2009). A lifetime-based routing protocol for connecting VANETs to the internet. In Proceedings of WoWMoM ’09 (pp. 1–9).Google Scholar
  17. 17.
    Phe-Neau, T., Dias de Amorim, M., & Conan, V. (2012). Vicinity-based DTN characterization. In Proceedings of MobiOpp ’12 (pp. 37–44).Google Scholar
  18. 18.
    Phe-Neau, T., Dias de Amorim, M., Campista, M. E. M., & Conan, V. (2013). Examining vicinity dynamics in opportunistic networks. In Proceedings of PM2HW2N ’13 (pp. 153–160).Google Scholar
  19. 19.
    Hoque, M. A., Hong, X., & Dixon, B. (2014). Efficient multi-hop connectivity analysis in urban vehicular networks. Vehicular Communications, 1(2), 78.CrossRefGoogle Scholar
  20. 20.
    Piorkowski, M., Sarafijanovic-Djukic, N., & Grossglauser, M. (2009). CRAWDAD data set epfl/mobility (v. 2009-02-24). [Online]. Available Jan, 2017
  21. 21.
    Jetcheva, J. G., Hu, Y. C., PalChaudhuri, S., Saha, A. K., & Johnson, D. B. (2003). CRAWDAD data set rice/ad_hoc_city (v. 2003-09-11). [Online]. Available Jan, 2017
  22. 22.
    Uppoor, S., & Fiore, M. (2011). Large-scale urban vehicular mobility for networking research. In Proceedings of VNC ’11 (pp. 62–69).Google Scholar
  23. 23.
    Hartenstein, H., Laberteaux, K., & Ebrary, I. (2010). VANET: Vehicular applications and inter-networking technologies. Hoboken: Wiley Online Library.CrossRefGoogle Scholar
  24. 24.
    Wang, X., Wang, C., Cui, G., & Yang, Q. (2015). Practical link duration prediction model in vehicular ad hoc networks. International Journal of Distributed Sensor Networks, 11(3), 216934. Scholar
  25. 25.
    Bazzi, A., Masini, B. M., Zanella, A., & Pasolini, G. (2015). IEEE 802. 11p for cellular offloading in vehicular sensor networks. Computer Communications, 60, 97–108.CrossRefGoogle Scholar
  26. 26.
    He, J., Cai, L., Pan, J., & Cheng, P. (2017). Delay analysis and routing for two-dimensional vanets using carry-and-forward mechanism. IEEE Transactions on Mobile Computing, 16(7), 1830.CrossRefGoogle Scholar
  27. 27.
    Shelly, S., & Babu, A. V. (2017). Link residual lifetime-based next hop selection scheme for vehicular ad hoc networks. EURASIP Journal on Wireless Communications and Networking, 2017(1), 23:1.CrossRefGoogle Scholar
  28. 28.
    Spyropoulos, T., Rais, R. N. B., Turletti, T., Obraczka, K., & Vasilakos, A. (2010). Routing for disruption tolerant networks: Taxonomy and design. Wireless Networks, 16(8), 2349.CrossRefGoogle Scholar
  29. 29.
    Fathian, M., & Jafarian-Moghaddam, A. R. (2015). New clustering algorithms for vehicular ad-hoc network in a highway communication environment. Wireless Networks, 21(8), 2765.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  • Dianne S. V. Medeiros
    • 1
    Email author
  • Dayro A. B. Hernandez
    • 1
  • Miguel Elias M. Campista
    • 1
  • Aloysio de Castro P. Pedroza
    • 1
  1. 1.GTA/PEE-COPPE/DEL-PoliUniversidade Federal do Rio de JaneiroRio de JaneiroBrazil

Personalised recommendations