Advertisement

Wireless Networks

, Volume 25, Issue 4, pp 1805–1814 | Cite as

A robust energy-efficient power control algorithm for cognitive radio networks

  • Mingyue ZhouEmail author
  • Xiaohui Zhao
  • Hao Yin
Article
  • 95 Downloads

Abstract

To achieve energy efficiency is very important for future cognitive radio networks since we need less power consumption and much more transmitted information. In this paper, we propose a power allocation scheme with robust energy efficiency consideration for appropriately guaranteeing target signal to interference plus noise ratio (SINR) requirement for cognitive users and the received interferences at primary receivers below a threshold. A time-varying interference threshold protection factor and a protection margin to the SINR targets are introduced for the above purpose. This problem is formulated as a fraction programming problem solved by an iterative algorithm based on Lagrange dual approach by convex transformation. Simulation results show the validity of the proposed algorithm on both energy efficiency and robustness under channel gain disturbance.

Keywords

Cognitive radio Power control Energy efficiency 

Notes

Acknowledgements

This work was supported by the Nation Natural Science Foundation of China (No. 61501059) and Jilin province Education Office (No. 2016343). We would like to thank the anonymous reviewers and the editor, whose invaluable comments helped improve the presentation of this paper substantially.

References

  1. 1.
    Ozcan, G., & Gursoy, M. C. (2015). Optimal power control for underlay cognitive radio systems with arbitrary input distributions. IEEE Transactions on Wireless Communications, 14(8), 4219–4233.CrossRefGoogle Scholar
  2. 2.
    Ahmad, A., Ahmad, S., Rehmani, M. H., & Hassan, N. U. (2015). A survey on radio resource allocation in cognitive radio sensor networks. IEEE Communication Surveys & Tutorials, 17(2), 888–917.CrossRefGoogle Scholar
  3. 3.
    Xu, Y. J., Zhao, X. H., & Liang, Y. C. (2015). Robust power control and beamforming in cognitive radio networks: A survey. IEEE Communication Surveys & Tutorials, 17(4), 1834–1857.CrossRefGoogle Scholar
  4. 4.
    Wang, J., Chen, J. S., Lu, Y., Gerla, M., & Cabric, D. (2015). Robust power control under location and channel uncertainty in cognitive radio networks. IEEE Wireless Communications Letters, 4(2), 113–116.CrossRefGoogle Scholar
  5. 5.
    Han, S., Kim, H., Han, Y., Cilffi, J. M., & Leung, V. C. M. (2013). A distributed power allocation scheme for sum-rate maximization on cognitive GMACs. IEEE Transactions on Communications, 61(1), 248–256.CrossRefGoogle Scholar
  6. 6.
    Zhang, Y. H., & Leung, C. (2009). Resource allocation in an OFDM-based cognitive radio system. IEEE Transactions on Communications, 57(7), 1928–1931.CrossRefGoogle Scholar
  7. 7.
    Haykin, S., & Setoodeh, P. (2015). Cognitive radio networks: The spectrum supply chain paradigm. IEEE Transactions on Cognitive Communications and Networking, 1(1), 3–28.CrossRefGoogle Scholar
  8. 8.
    Ahmad, A., Ahmad, S., Rehmain, M. Husain, & Hassan, N. U. (2015). A survey on radio resource allocation in cognitive radio sensor networks. IEEE Communications Surveys & Tutorials, 17(2), 888–917.CrossRefGoogle Scholar
  9. 9.
    Xu, C., Sheng, M., Yang, C. G., Wang, X. J., & Wang, L. (2014). Pricing-based multiresource allocation in OFDMA cognitive radio networks: An energy efficiency perspective. IEEE Transactions on Vehicular Technology, 63(5), 2336–2348.CrossRefGoogle Scholar
  10. 10.
    Alabbasi, A., Rezki, Z., & Shihada, B. (2015). Energy efficient resource allocation for cognitive radios: A generalized sensing analysis. IEEE Transactions on Wireless Communications, 14(5), 2455–2469.CrossRefGoogle Scholar
  11. 11.
    Sboui, L., Rezki, Z., & Alouini, M. S. (2015). Energy-efficient power allocation for underlay cognitive radio systems. IEEE Transactions on Cognitive Communications and Networking, 1(3), 273–283.CrossRefGoogle Scholar
  12. 12.
    Hasan, Z., Bansal, G., Hossain, E., & Vijay, K. B. (2009). Energy-efficient power allocation in OFDM-based cognitive radio systems: A risk-return model. IEEE Transactions on Wireless Communications, 8(12), 6078–6088.CrossRefGoogle Scholar
  13. 13.
    Zhang, H. J., Huang, S. T., Jiang, C. X., Long, K. P., Leung, V. C. M., & Poor, H. V. (2017). Energy efficient user association and power allocation in millimeter wave based ultra dense networks with energy harvesting base stations. IEEE Journal on Selected Areas in Communications, 35(9), 1936–1947.CrossRefGoogle Scholar
  14. 14.
    Zhang, Z. C., Zhang, H. J., Lu, Z. M., Zhao, Z. M., & Wen, X. M. (2013). Energy-efficient resource optimization in OFDMA-based dense femtocell networks. In 2013 20th international conference on telecommunications (ICT 2013) (pp. 1–5).Google Scholar
  15. 15.
    Zhang, H. J., Liu, H., Cheng, J. L., & Leung, V. C. M. (2017). Downlink energy efficiency of power allocation and wireless backhaul bandwidth allocation in heterogeneous small cell networks. IEEE Transactions on Communications.  https://doi.org/10.1109/TCOMM.2017.2763623.Google Scholar
  16. 16.
    Wang, L., Sheng, M., Zhang, Y., & Wang, X. J. (2015). Robust energy efficiency maximization in cognitive radio networks: The worst-case optimization approach. IEEE Transactions on Communications, 63(1), 51–65.Google Scholar
  17. 17.
    Wang, S. W., Shi, W. J., & Wang, C. G. (2015). Energy-efficient resource management in OFDM-based cognitive radio networks under channel uncertainty. IEEE Transactions on Communications, 63(9), 3092–3102.CrossRefGoogle Scholar
  18. 18.
    Zhang, H. J., Nie, Y. N., Cheng, J. L., Leung, V. C. M., & Nallanathan, A. (2017). Sensing time optimization and power control for energy efficient cognitive small cell with imperfect hybrid spectrum sensing. IEEE Transactions on Wireless Communications, 16(2), 730–743.CrossRefGoogle Scholar
  19. 19.
    Wang, Y., Xu, W. J., Yang, K. W., & Lin, J. R. (2012). Optimal energy-efficient power allocation for OFDM-based cognitive radio networks. IEEE Communications Letters, 16(9), 1420–1423.CrossRefGoogle Scholar
  20. 20.
    Haykin, S. (2005). Cognitive radio: Brain-empowered wireless communications. IEEE Journal on Selected Areas in Communications, 23(2), 201–219.CrossRefGoogle Scholar
  21. 21.
    Tan, C. W., Palomar, D. P., & Chiang, M. (2009). Energy-robustness tradeoff in cellular network power control. IEEE Transactions on Networking, 17(3), 912–925.CrossRefGoogle Scholar
  22. 22.
    Naeem, M., IIIanko, K., Karmokar, A., Anpalagan, A., & Jaseemuddin, M. (2013). Optimal power allocation for green cognitive radio: Fractional programming approach. IET Communications, 7(12), 1279–1286.CrossRefGoogle Scholar
  23. 23.
    Werner, Dinkelbach. (1964). On nonlinear fractional programming. Management Science, 13(7), 492–498.MathSciNetGoogle Scholar
  24. 24.
    Boyd, S., & Vandenberghe, L. (2004). Convex optimization. Cambridge, UK: Cambridge University press.CrossRefzbMATHGoogle Scholar
  25. 25.
    Bazaraa, M. S., Sherali, H. D., & Shetty, C. M. (2006). Nonlinear programming: Theory and algorithms (3rd ed.). New York: Wiley-Interscience.CrossRefzbMATHGoogle Scholar
  26. 26.
    Sun, S. Q., Ni, W. M., & Zhu, Y. (2011). Robust power control in cognitive radio networks: A distributed way. In 2011 IEEE international conference on communications (ICC 2011) (pp. 1–13).Google Scholar
  27. 27.
    Setoodeh, P., & Haykin, S. (2009). Robust transmit power control for cognitive radio. Proceedings of the IEEE, 97(5), 915–939.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2017

Authors and Affiliations

  1. 1.College of Computer Science and EngineeringChangchun University of TechnologyChangchunChina
  2. 2.College of Communication EngineeringJilin UniversityChangchunChina

Personalised recommendations