Wireless Networks

, Volume 25, Issue 4, pp 1791–1804 | Cite as

Interference analysis for asynchrounous OFDM/FBMC based cognitive radio networks over Rayleigh fading channel

  • Sonia Ben AissaEmail author
  • Moez Hizem
  • Ridha Bouallegue


In the future fifth generation networked society, devices will suffer from the asynchronous multi-carrier effect which impacts the user’s quality of experience. This paper investigates the timing misalignment effect on interference level in the context of a cognitive radio (CR) network. Our study considers both multicarrier techniques orthogonal frequency division multiplexing (OFDM) and filter bank multicarrier (FBMC). The originality of our paper consists in proposing a simple but accurate analytical model to evaluate our system’s performance in terms of interference level, signal-to-interference-plus-noise ratio and bit error rate. Specifically, two case studies are considered, a single-user case (one primary user and one secondary user) and a multi-user case with exact theoretical expressions of interference level. We had also made a comparison between OFDM and FBMC techniques. The most striking observation to emerge from our results is that the asynchronous interference is inversely propositional to timing offset even for the multi-user case, and that differences in the normalized interference level between the single/multi-user cases is barely perceived for the FBMC technique, proving its efficiency. Our simulations’ results had further strengthened our confidence in the suggested model. It shows that FBMC is best suited for CR networks since it provides BER improvements compared to OFDM.


Interference Cognitive radio OFDM FBMC Asynchronous Analytical approach 


  1. 1.
    Fixed and Mobile IP Network Traffic Forecast—VNI, Cisco (2016). Accessed 13 Mar 2016.
  2. 2.
    Hasan, Z., Boostanimehr, H., & Bhargava, V. K. (2011). Green cellular networks: A survey, some research issues and challenges. IEEE Communications Surveys and Tutorials, 13(4), 524–540.CrossRefGoogle Scholar
  3. 3.
    Akan, O. B., Karli, O. B., & Ergul, O. (2009). Cognitive radio sensor networks. IEEE Network, 23(4), 34–40.CrossRefGoogle Scholar
  4. 4.
    Mitola, J., & Maguire, G. Q. (1999). Cognitive radio: Making software radios more personal. IEEE Personal Communications, 6(4), 13–18.CrossRefGoogle Scholar
  5. 5.
    Ozger, M., & Akan, O. B. (2016). On the utilization of spectrum opportunity in cognitive radio networks. IEEE Communications Letters, 20, 157–160.CrossRefGoogle Scholar
  6. 6.
    Mahmoud, H. A., Yucek, T., & Arslan, H. (2009). OFDM for cognitive radio: Merits and challenges. IEEE Wireless Communications, 16(2), 6–15.CrossRefGoogle Scholar
  7. 7.
    Wang, X., Tjhung, T. T., Wu, Y., & Caron, B. (2003). SER performance evaluation and optimization of OFDM system with residual frequency and timing offsets from imperfect synchronization. IEEE Transactions on Broadcasting, 49(2), 170–177.CrossRefGoogle Scholar
  8. 8.
    Zhang, H., Le Ruyet, D., & Terre, M. (2009). Spectral efficiency comparison between OFDM/OQAM-and OFDM-based cr networks. Wireless Communications and Mobile Computing, 9(11), 1487–1501.CrossRefGoogle Scholar
  9. 9.
    Ben Aissa, S., Hizem, M., & Bouallegue, R. (2016). Interference analysis of asynchronous OFDM/FBMC based cognitive radio transceivers. In 2016 30th international conference on advanced information networking and applications workshops (WAINA) (pp. 512–517). IEEE.Google Scholar
  10. 10.
    Xie, H., Wang, B., Gao, F., & Jin, S. (2016). A full-space spectrum-sharing strategy for massive MIMO cognitive radio systems. IEEE Journal on Selected Areas in Communications, 34(10), 2537–2549.CrossRefGoogle Scholar
  11. 11.
    Zhang, R., Gao, F., & Liang, Y.-C. (2010). Cognitive beamforming made practical: Effective interference channel and learning-throughput tradeoff. IEEE Transactions on Communications, 58(2), 706–718.CrossRefGoogle Scholar
  12. 12.
    Bodinier, Q., Bader, F., & Palicot, J. (2016). Modeling interference between OFDM/OQAM and CP-OFDM: Limitations of the PSD-based model. arXiv preprint arXiv:1603.08697.
  13. 13.
    Hamdi, K. A., & Shobowale, Y. M. (2009). Interference analysis in downlink ofdm considering imperfect intercell synchronization. IEEE Transactions on Vehicular Technology, 58(7), 3283–3291.CrossRefGoogle Scholar
  14. 14.
    Medjahdi, Y., Terre, M., Le Ruyet, D., Roviras, D., & Dziri, A. (2011). Performance analysis in the downlink of asynchronous OFDM/FBMC based multi-cellular networks. IEEE Transactions on Wireless Communications, 10(8), 2630–2639.CrossRefGoogle Scholar
  15. 15.
    Boulogeorgos, A.-A. A., Chatzidiamantis, N. D., & Karagiannidis, G. K. (2016). Spectrum sensing with multiple primary users over fading channels. IEEE Communications Letters, 20(7), 1457–1460.Google Scholar
  16. 16.
    Zhao, N., Yu, F. R., Sun, H., & Li, M. (2016). Adaptive power allocation schemes for spectrum sharing in interference-alignment-based cognitive radio networks. IEEE Transactions on Vehicular Technology, 65(5), 3700–3714.CrossRefGoogle Scholar
  17. 17.
    Li, X., Zhao, N., Sun, Y., & Yu, F. R. (2016). Interference alignment based on antenna selection with imperfect channel state information in cognitive radio networks. IEEE Transactions on Vehicular Technology, 65(7), 5497–5511.CrossRefGoogle Scholar
  18. 18.
    Carsello, R. D., Meidan, R., Allpress, S., O’Brien, F., Tarallo, J. A., Ziesse, N., et al. (1997). IMT-2000 standards: Radio aspects. IEEE Personal Communications, 4(4), 30–40.CrossRefGoogle Scholar
  19. 19.
    Morelli, M., & D’Amico, A. A. (2007). Maximum likelihood timing and carrier synchronization in burstmode satellite transmissions. EURASIP Journal on Wireless Communications and Networking, 2007(1), 1–8.CrossRefGoogle Scholar
  20. 20.
    Kang, A. S., & Vig, R. (2015). Computer aided ber performance analysis of fbmc cognitive radio for physical 25 layer under the effect of binary symmetric radio fading channel. Wireless Personal Communications, 82(3), 1263–1278.CrossRefGoogle Scholar
  21. 21.
    Pollet, T., Van Bladel, M., & Moeneclaey, M. (1995). BER sensitivity of OFDM systems to carrier frequency offset and wiener phase noise. IEEE Transactions on Communications, 43(2/3/4), 191–193.CrossRefGoogle Scholar
  22. 22.
    Saleem, Y., & Rehmani, M. H. (2014). Primary radio user activity models for cognitive radio networks: A survey. Journal of Network and Computer Applications, 43, 1–16.CrossRefGoogle Scholar
  23. 23.
    Akyildiz, I. F., Lee, W., Vuran, M. C., & Mohanty, S. (2008). A survey on spectrum management in cognitive radio networks. IEEE Communications Magazine, 46(4), 40–48.CrossRefGoogle Scholar
  24. 24.
    Bukhari, S. H. R., Siraj, S., & Rehmani, M. H. (2016). NS-2 based simulation framework for cognitive radio sensor networks. Wireless Networks. Scholar
  25. 25.
    He, Q., & Schmeink, A. (2015). Comparison and evaluation between FBMC and ofdm systems. In Proceedings of 19th international ITG workshop on smart antennas, WSA 2015 (pp. 1–7). VDE.Google Scholar
  26. 26.
    Bouhadda, H., Shaiek, H., Roviras, D., Zayani, R., Medjahdi, Y., & Bouallegue, R. (2014). Theoretical analysis of ber performance of nonlinearly amplified FBMC/OQAM and OFDM signals. EURASIP Journal on Advances in Signal Processing, 2014(1), 1–16.CrossRefGoogle Scholar
  27. 27.
    Ben Aissa, S., Hizem, M., & Bouallegue, R. (2016). Asynchronous OFDM interference analysis in multi-user cognitive radio networks. In 2016 international wireless communications and mobile computing conference (IWCMC) (pp. 1135–1140). IEEE.Google Scholar
  28. 28.
    Cho, K., & Yoon, D. (2002). On the general BER expression of one-and two-dimensional amplitude modulations. IEEE Transactions on Communications, 50(7), 1074–1080.CrossRefGoogle Scholar
  29. 29.
    Dakhli, M. C., Zayani, R., & Bouallegue, R. (2014) Nonlinear distortion cancellation of high power amplifier nonlinearity on mimo MC-CDMA systems over Rayleigh fading channel. In 2014 International conference on multimedia computing and systems (ICMCS) (pp. 1291–1294). IEEE.Google Scholar
  30. 30.
    Ben Aissa, S., Hizem, M., & Bouallegue, R. (2014). Performance analysis of underlay waveform in the downlink of asynchronous OFDM/FBMC based cognitive radio transceivers. In 10th international conference on wireless communications, networking and mobile computing (WiCOM 2014) (pp. 185–190). IET.Google Scholar
  31. 31.
    Hassan, M. H., Hossain, M. J., & Bhargava, V. K. (2017). Cooperative beamforming for cognitive radio-based broadcasting systems in presence of asynchronous interference. IEEE Transactions on Vehicular Technology, 66(3), 2311–2323.CrossRefGoogle Scholar
  32. 32.
    Bukhari, S. H. R., Rehmani, M. H., & Siraj, S. (2016). A survey of channel bonding for wireless networks and guidelines of channel bonding for futuristic cognitive radio sensor networks. IEEE Communications Surveys and Tutorials, 18(2), 924–948.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2017

Authors and Affiliations

  1. 1.Innov’COM Laboratory-Sup’ComUniversity of CarthageTunisTunisia

Personalised recommendations