Wireless Networks

, Volume 25, Issue 4, pp 1749–1762 | Cite as

Resource allocation in multicell systems with coordinated beamforming and partial data cooperation: a study on the effect of cooperation on achievable performance

  • S. Barman RoyEmail author
  • A. S. Madhukumar
  • Francois Chin


The rise in wireless data traffic requires innovative interference management techniques to meet the demand. Transmit cooperation among multiple base stations has been proposed as a solution to this challenge and improve throughput. This paper proposes novel resource allocation algorithms with two different cooperation paradigms, viz. the cooperative beamforming and partial data cooperation. The well-known duality principle, which has been used to solve uplink and downlink optimisation problems in previous literature, is shown to exist for multicell systems with both coordinated beamforming and the novel paradigm termed as partial data cooperation. Using the generalised version of duality, this paper solves relevant resource allocation problems in both cases. The proposed power allocation problems are shown to outperform some of the existing optimisation techniques in terms of throughput while having significant conceptual and theoretical advantage.


Beamforming Coordinated multipoint transmission Interference management Resource allocation Multicell cooperation Uplink–downlink duality 



This work was supported by Singapore Ministry of Education Academic Research Fund Tier 1 grant. The authors also thank the anonymous reviewers and the editor for their constructive comments and suggestions which helped us to improve the quality of the paper.


  1. 1.
    Marzetta, T. L. (2010). Noncooperative cellular wireless with unlimited numbers of base station antennas. IEEE Transactions on Wireless Communications, 9(11), 3590–3600.CrossRefGoogle Scholar
  2. 2.
    Chae, C. B., Hwang, I., Heath, R. W., & Tarokh, V. (2012). Interference aware-coordinated beamforming in a multi-cell system. IEEE Transactions on Wireless Communications, 11(10), 3692–3703.CrossRefGoogle Scholar
  3. 3.
    Li, Y., Bai, L., Chen, C., Jin, Y., & Choi, J. (2013). Successive orthogonal beamforming for cooperative multi-point downlinks. IET Communications, 7(8), 706–714.CrossRefGoogle Scholar
  4. 4.
    He, S., Huang, Y., Yang, L., Nallanathan, A., & Liu, P. (2012). A multi-cell beamforming design by uplink-downlink max–min SINR duality. IEEE Transactions on Wireless Communications, 11(8), 2858–2867.Google Scholar
  5. 5.
    Dartmann, G., Gong, X., Afzal, W., & Ascheid, G. (2013). On the duality of the max–min beamforming problemwith per-antenna and per-antenna-array power. IEEE Transactions on Vehicular Technology, 62(2), 606–619.CrossRefGoogle Scholar
  6. 6.
    Nguyen, D. H. N., & Le-Ngoc, T. (2014). Sum-rate maximization in the multicell MIMO multiple-access channel with interference coordination. IEEE Transactions on Wireless Communications, 13(1), 36–48.CrossRefzbMATHGoogle Scholar
  7. 7.
    Vishwanath, S., Jindal, N., & Goldsmith, A. J. (2003). Duality, achievable rates, and sum-rate capacity of Gaussian MIMO broadcast channels. IEEE Transactions on Information Theory, 49(10), 2658–2668.MathSciNetCrossRefzbMATHGoogle Scholar
  8. 8.
    Zhang, L., Zhang, R., Liang, Y. C., Xin, Y., & Vincent Poor, H. (2012). On Gaussian MIMO BC-MAC duality with multiple transmit covariance constraints. IEEE Transactions on Information Theory, 58(4), 2064–2078.MathSciNetCrossRefzbMATHGoogle Scholar
  9. 9.
    Kim, S. M., & Bengtsson, M. (2016). Virtual full-duplex buffer-aided relaying in the presence of inter-relay interference. IEEE Transactions on Wireless Communications, 15(4), 2966–2980.CrossRefGoogle Scholar
  10. 10.
    Hwang, I., Chae, C. B., Lee, J., & Heath, R. W. (2013). Multicell cooperative systems with multiple receive antennas. IEEE Wireless Communications, 20(1), 50–58.CrossRefGoogle Scholar
  11. 11.
    Caire, G., & Shitz, S. S. (2003). On the achievable throughput of a multiantenna Gaussian broadcast channel. IEEE Transactions on Information Theory, 49(7), 1691–1706.MathSciNetCrossRefzbMATHGoogle Scholar
  12. 12.
    Kießling, M. (2004). Statistical analysis and transmit prefiltering for MIMO wireless systems in correlated fading environments. PhD thesis, Universität Stuttgart.Google Scholar
  13. 13.
    Hoffman, K., & Kunze, R. (2001). Linear algebra (2nd ed.). New Jersey: Pearson Education Inc.zbMATHGoogle Scholar
  14. 14.
    Roy, S. B., & Madhukumar, A. S. (2015). Characterising the Pareto frontier of multiple access rate region. Springer Journal of Wireless Networks, 21(5), 1537–1548.CrossRefGoogle Scholar
  15. 15.
    Zanella, A., Chiani, M., & Win, M. Z. (2005). MMSE reception and successive interference cancellation for MIMO systems with high spectral efficiency. IEEE Transactions on Wireless Communications, 4(3), 1244–1253.CrossRefGoogle Scholar
  16. 16.
    Schubert, M., & Boche, H. (2007). A generic approach to QoS-based transceiver optimization. IEEE Transactions on Communications, 55(8), 1557–1566.CrossRefGoogle Scholar
  17. 17.
    Barman Roy, S., Madhukumar, A. S., & Joung, J. (2017). On joint pareto frontier in multiple access and relay rate regions with Rayleigh fading. IEEE Transactions on Vehicular Technology, 66(5), 3777–3786.CrossRefGoogle Scholar
  18. 18.
    Berry, M. W. (1992). Large scale singular value computations. International Journal of Supercomputer Applications, 6(1), 13–49.CrossRefGoogle Scholar
  19. 19.
    You, L., Gao, X., Swindlehurst, A. L., & Zhong, W. (2016). Channel acquisition for massive MIMO-OFDM with adjustable phase shift pilots. IEEE Transactions on Signal Processing, 64(6), 1461–1476.MathSciNetCrossRefzbMATHGoogle Scholar
  20. 20.
    Colemanm, T. F., & Pothen, A. (1987). The null space problem II: Algorithms. Journal on Algebraic Discrete Methods, 8(4), 544–563.MathSciNetCrossRefzbMATHGoogle Scholar
  21. 21.
    Annapureddy, V. S., & Veeravalli, V. V. (2009). Gaussian interference networks: Sum capacity in the low interference regime and new outer bounds on the capacity region. IEEE Transactions on Information Theory, 55(7), 3032–3050.MathSciNetCrossRefzbMATHGoogle Scholar
  22. 22.
    Costa, M. (1983). Writing on dirty paper. IEEE Transactions on Information Theory, 29(3), 439–441.MathSciNetCrossRefzbMATHGoogle Scholar
  23. 23.
    Cheng, R. S., & Verdú, S. (1993). Gaussian multiaccess channels with ISI: Capacity region and multiuser water filling. IEEE Transactions on Information Theory, 39(3), 773–785.MathSciNetCrossRefzbMATHGoogle Scholar
  24. 24.
    Birkhoff, G. (1940). Lattice theory. New York: American Mathematical Society.zbMATHGoogle Scholar
  25. 25.
    Boyd, S., & Vandenberghe, L. (2004). Convex optimization (2nd ed.). New York: Cambridge University Press.CrossRefzbMATHGoogle Scholar
  26. 26.
    Roy, S. B., & Madhukumar, A. S. (2014). Resource allocation strategy in multiple access interference channel. In Proceedings of vehicular technology conference fall, Vancouver, British Columbia (pp. 1–5).Google Scholar
  27. 27.
    Chandrasekhar, V., Andrews, J. G., Muharemovict, T., Shen, Z., & Gatherer, A. (2009). Power control in two-tier femtocell networks. IEEE Transactions on Wireless Communications, 8(8), 4316–4328.CrossRefGoogle Scholar
  28. 28.
    Huh, H., Papadopoulos, H. C., & Caire, G. (2010). Multiuser MIMO transmitter optimization for inter-cell interference mitigation. IEEE Transactions on Signal Processing, 58(8), 4272–4285.MathSciNetCrossRefzbMATHGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2017

Authors and Affiliations

  1. 1.School of Computer Science and EngineeringNanyang Technological UniversityJurong WestSingapore
  2. 2.Internet of Things ConnectivityInstitute for Infocomm ResearchJurong WestSingapore

Personalised recommendations