Wireless Networks

, Volume 25, Issue 4, pp 1657–1667 | Cite as

A new cost function for improving Anypath routing performance of VANETs in highways

  • Vahid Sadatpour
  • Farzad ZargariEmail author
  • Mohammad Ghanbari


Instability of wireless networks and high mobility of vehicles make effective and reliable delivery of packets in VANETs a challenging issue. Anypath routing is proposed to tackle this issue in multi hop VANET communications. Link stability and quality parameters are used in cost metrics proposed for Anypath routing. Both of them prefer near hops in the forwarding set and as a result, the number of hops and delay in Anypath VANET communications are increased. In this paper a new cost metric for Anypath VANET routing is proposed to reduce the hop count and delay and increase the network throughput and the packet delivery ratio. The simulation results indicate superior performance of the proposed cost function over other tested methods such as SAF and LLA.


Anypath routing Cost function VANET 


  1. 1.
    Li, F., & Wang, Y. (2007). Routing in vehicular ad hoc networks: A survey. IEEE Vehicular Technology Magazine, 2(2), 12–22.CrossRefGoogle Scholar
  2. 2.
    Blum, J. J., Eskandarian, A., & Hoffman, L. J. (2004). Challenges of inter vehicle ad hoc networks. IEEE Transactions on Intelligent Transportation Systems, 5(4), 347–351.CrossRefGoogle Scholar
  3. 3.
    Wang, S. Y. (2004). On the intermittence of routing paths in vehicle-formed mobile ad hoc networks on highways. In Proceedings of 7th IEEE intelligent transportation systems conference (pp. 803–809).Google Scholar
  4. 4.
    Zhu, L., Li, C., Li, B., Wang, X., & Mao, G. (2016). Geographic routing in multilevel scenarios of vehicular ad hoc networks. IEEE Transactions on Vehicular Technology, 65(9), 7740–7753.CrossRefGoogle Scholar
  5. 5.
    Zhu, L., Li, C., Wang, Y., Luo, Z., Liu, Z., Li, B., et al. (2015). On stochastic analysis of greedy routing in vehicular networks. IEEE Transactions on Intelligent Transportation Systems, 16(6), 3353–3366.CrossRefGoogle Scholar
  6. 6.
    Diggavi, S., Al-Dhahir, N., Stamoulis, A., & Calderbank, A. (2004). Great expectations: The value of spatial diversity in wireless networks. Proceedings of the IEEE, 92, 219–270.CrossRefGoogle Scholar
  7. 7.
    Qin, X., & Berry, R. (2003). Exploiting multiuser diversity for medium access control in wireless networks. In: Proceeding of the IEEE conference on computer communications (INFOCOM) (pp. 1084–1094).Google Scholar
  8. 8.
    So, J., & Byun, H. (2014). Opportunistic routing with in-network aggregation for asynchronous duty-cycled wireless sensor networks. Springer Wireless Networks, 20(5), 833–846. Scholar
  9. 9.
    Laufer, R., Dubois-Ferriere, H., & Kleinrock, L. (2012). Polynomial-time algorithms for multirate Anypath routing in wireless multihop networks. IEEE/ACM Transactions on Networking (TON), 20(3), 742–755.CrossRefGoogle Scholar
  10. 10.
    Rack, J. (2014). LLA: A new Anypath routing scheme providing long path lifetime in VANETs. IEEE Communications Letters, 18(2), 281–284.CrossRefGoogle Scholar
  11. 11.
    Liu, H., Zhang, B., Mouftah, H. T., Shen, X., & Ma, J. (2009). Opportunistic routing for wireless ad hoc and sensor networks: Present and future directions. IEEE Communications Magazine, 47(12), 103–109.CrossRefGoogle Scholar
  12. 12.
    Zeng, K., Lou, W., & Zhai, H. (2008). Capacity of opportunistic routing in multi-rate and multi-hop wireless networks. IEEE Transactions on Wireless Communications, 7, 5118–5128.CrossRefGoogle Scholar
  13. 13.
    Duquennoy, S., Landsiedel, O., & Voigt, T. (Nov. 2013). Let the tree bloom: Scalable opportunistic routing with orpl. In Proceeding of the ACM conference on embedded networked sensor systems (SenSys).Google Scholar
  14. 14.
    Zhao, Z., Rosario, D., Braun, T., & Cerqueira, E. (April 2014). Context-aware opportunistic routing in mobile ad-hoc networks incorporating node mobility. In IEEE wireless communications and networking conference (WCNC) (pp. 2138–2143).Google Scholar
  15. 15.
    Zeng, K., Lou, W., Yang, J., & Brown, D., III. (2007). On throughput efficiency of geographic opportunistic routing in multihop wireless networks. Mobile Networks Applications, 12, 347–357.CrossRefGoogle Scholar
  16. 16.
    Zeng, K., Yang, Z., & Lou, W. (2009). Location-aided opportunistic forwarding in multirate and multihop wireless networks. IEEE Transactions on Vehicular Technology, 58, 3032–3040.CrossRefGoogle Scholar
  17. 17.
    Rosario, D., Zhao, Z., Braun, T., Cerqueira, E., Santos, A., & Alyafawi, I. (June 2014). Opportunistic routing for multi-flow video dissemination over flying adhoc networks. In IEEE international symposium on a world of wireless, mobile and multimedia networks (WoWMoM) (pp. 1–6).Google Scholar
  18. 18.
    Biswas, S., & Morris, R. (Aug. 2005). Opportunistic routing in multi-hop wireless networks. In Proceedings of the conference of the ACM SIGCOMM.Google Scholar
  19. 19.
    Salehi, M., Boukerche, A., & Darehshoorzadeh, A. (2015). Towards a novel trust-based opportunistic routing protocol for wireless networks. Wireless Networks, 22, 927–943.CrossRefGoogle Scholar
  20. 20.
    Yerra, R. V. P., & Rajalakshmi, P. (2013) Effect of relay nodes on end-to-end delay in multi-hop wireless ad-hoc networks. In Paper presented at the advanced information networking and applications workshops (WAINA), 27th international conference on (2013, 25–28 March 2013).Google Scholar
  21. 21.
    Haixia, P., Liang, L., Shen, X., & Li, G. Y. (2017). Vehicular communications: A network layer perspective. arXiv:1707.09972v1 [cs.CY].
  22. 22.
    Togou, M. A., Hafid, A., & Khoukhi, L. (2016). SCRP: Stable CDS-based routing protocol for urban vehicular ad hoc networks. IEEE Transactions on Intelligent Transportation Systems, 17(5), 1298–1307.CrossRefGoogle Scholar
  23. 23.
    Couto, D. D., Aguayo, D., Bicket, J., & Morris, R. (Sep. 2003). A high-throughput path metric for multi-hop wireless routing. In Proceedings of the ACM MobiCom (pp. 134–146).Google Scholar
  24. 24.
    Kato, S., Tsugawa, S., Tokuda, K., Matsni, T., & Fujii, H. (2002). Vehicle control algorithms for cooperative driving with automated vehicles and intervehicle communications. IEEE Transactions on Intelligent Transportation Systems, 3, 155–161.CrossRefGoogle Scholar
  25. 25.
    Enkelmann, W. (2003). FleetNet-applications for inter-vehicle communication. In Proceedings of IEEE intelligent vehicles symposium (pp. 162–167).Google Scholar
  26. 26.
    Vollmer, D., Balasubramanian, B., & Siegert, E. (1992). Fahrt simulation unter realistischen Umfeld bedingungen (in German). VDI-Berichte.Google Scholar
  27. 27.
    Benz, T., Schaefers, L., Stiller, C., & Vollmer, D. (1999). Feasibility study on truck planning on European motorways. Deliverable D08.1 of ITS Project PROMOTE-CHAUFFEUR.Google Scholar
  28. 28.
    Fueßler, H., Mauve, M., Hartenstein, H., Kasemann, M., & Vollmer, D. (July 2002) A comparison of routing strategies for vehicular ad hoc networks. Technical Report TR-02-003, Department of Computer Science, University of Mannheim.Google Scholar
  29. 29.
    Dib, G. (2009). Vehicle-to-vehicle channel simulation in a network simulator. Pittsburgh: Information Networking Institute, Carnegie Mellon University.Google Scholar
  30. 30.
    Sadatpour, V., Fathy, M., Yousefi, S., Rahmani, A. M., Cho, E., & Choi, M. K. (2009). Scheduling algorithm for beacon safety message dissemination in vehicular ad-hoc networks. Communications in Computer and Information Science, 56, 133–140.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2017

Authors and Affiliations

  1. 1.Department of Computer Engineering, Science and Research BranchIslamic Azad UniversityTehranIran
  2. 2.Department of Information Technology of Research Institute for ICTIran Telecom Research Center (ITRC)TehranIran
  3. 3.School of Computer Science and Electronic EngineeringUniversity of EssexColchesterUK
  4. 4.School of Electrical and Computer EngineeringUniversity of TehranTehranIran

Personalised recommendations