Advertisement

Wireless Networks

, Volume 25, Issue 4, pp 1619–1640 | Cite as

Effective multi-stage error control algorithms for robust 3D video transmission over wireless networks

  • W. El-ShafaiEmail author
  • S. El-Rabaie
  • M. M. El-Halawany
  • Fathi E. Abd El-Samie
Article
  • 62 Downloads

Abstract

The Three-Dimensional Video (3DV) contains diverse video streams taken by different cameras around an object. Thence, it is an imperative assignment to fulfill efficient compression to match the future resource limitations, whilst preserving a decisive reception 3DV quality. The efficient 3DV communication over wireless networks has become a recent considerable hot issue due to the restricted resources and the presence of severe channel errors. The high-rate 3DV encoding and transmission over mobile or Internet are vulnerable to packet losses due to the existence of heavy channel losses and limited bandwidth. Therefore, this paper presents efficient multi-stage error control algorithms for reliable 3DV transmission over error-prone wireless channels. At the encoder, the error resilience schemes of context adaptive variable length coding, slice structured coding, and explicit flexible macro-block ordering are utilized. At the decoder, a joint approach of a directional interpolation error concealment algorithm and a directional textural motion coherence algorithm is proposed to conceal the corrupted color frames. For the concealment of the lost depth frames, an encoder independent decoder dependent depth-assisted error concealment algorithm is suggested. Moreover, the weighted overlapping block motion and disparity compensation algorithm is exploited to choose the candidate concealment Motion Vectors (MVs) and Disparity Vectors (DVs). Furthermore, an improved recursive Bayesian filtering algorithm is utilized as a refinement stage to smooth the remaining errors in the previously selected candidate MVs and DVs for achieving better 3DV quality. Simulation results on several 3DV sequences show that the proposed algorithms achieve adequate objective and subjective 3DV quality performance at severe packet loss rates compared to the state-of-the-art algorithms.

Keywords

3D video Error control Motion and disparity compensation Bayesian Kalman Filter Quality assessment Wireless channel 

References

  1. 1.
    Zeng, H., Wang, X., Cai, C., Chen, J., & Zhang, Y. (2014). Fast multiview video coding using adaptive prediction structure and hierarchical mode decision. IEEE Transactions on Circuits and Systems for Video Technology, 24(9), 1566–1578.CrossRefGoogle Scholar
  2. 2.
    Xiang, W., Gao, P., & Peng, Q. (2015). Robust multiview three-dimensional video communications based on distributed video coding. IEEE Systems Journal, 99, 1–11.Google Scholar
  3. 3.
    Purica, A., Mora, E., Pesquet, B., Cagnazzo, M., & Ionescu, B. (2016). Multiview plus depth video coding with temporal prediction view synthesis. IEEE Transactions on Circuits and Systems for Video Technology, 26(2), 360–374.CrossRefGoogle Scholar
  4. 4.
    Chakareski, J. (2013). Adaptive multiview video streaming: challenges and opportunities. IEEE Communications Magazine, 51(5), 94–100.CrossRefGoogle Scholar
  5. 5.
    Abreu, A., Frossard, P., & Pereira, F. (2015). Optimizing multiview video plus depth prediction structures for interactive multiview video streaming. IEEE Journal of Selected Topics in Signal Processing, 9(3), 487–500.CrossRefGoogle Scholar
  6. 6.
    Shokrollahi, M. (2014). Error-correcting multi-stage code generator and decoder for communication systems having single transmitters or multiple transmitters. U.S. Patent, 8, 887, 020.Google Scholar
  7. 7.
    Hewage, C., & Martini, M. (2013). Quality of experience for 3D video streaming. IEEE Communications Magazine, 51(5), 101–107.CrossRefGoogle Scholar
  8. 8.
    Liu, Z., Cheung, G., & Ji, Y. (2013). Optimizing distributed source coding for interactive multiview video streaming over lossy networks. IEEE Transactions on Circuits and Systems for Video Technology, 23(10), 1781–1794.CrossRefGoogle Scholar
  9. 9.
    El-Shafai, W., Hrušovský, B., El-Khamy, M., El-Sharkawy, M. (2011). Joint space-time-view error concealment algorithms for 3D multi-view video. In 18th IEEE international conference on image processing (ICIP) (pp. 2201–2204).Google Scholar
  10. 10.
    El-Shafai, W. (2013) Optimized adaptive space-time-view multi-dimentional error concealment for 3D multi-view video transmission. In IEEE Saudi international electronics, communications and photonics conference (SIECPC) (pp. 1–6).Google Scholar
  11. 11.
    El-Shafai, W. (2015). Pixel-level matching based multi-hypothesis error concealment modes for wireless 3D H.264/MVC communication. 3D Research, 6(3), 31.CrossRefGoogle Scholar
  12. 12.
    El-Shafai, W. (2015). Joint adaptive pre-processing resilience and post-processing concealment schemes for 3D video transmission. 3D Research, 6(1), 1–13.CrossRefGoogle Scholar
  13. 13.
    Yang, D., Liu, T., Liu, S. M., Chen, F. C. (2016). An adaptive spatial-temporal error concealment scheme based on H.264/AVC. In A. Hussain (Ed.), Electronics, communications and networks V. Lecture notes in electrical engineering (Vol. 382). Singapore: Springer.Google Scholar
  14. 14.
    Zhou, Y., Xiang, W., & Wang, G. (2015). Frame loss concealment for multiview video transmission over wireless multimedia sensor networks. IEEE Sensors Journal, 15(3), 1892–1901.CrossRefGoogle Scholar
  15. 15.
    Lee, P., Kuo, K., & Chi, C. (2014). An adaptive error concealment method based on fuzzy reasoning for multi-view video coding. Journal of Display Technology, 10(7), 560–567.CrossRefGoogle Scholar
  16. 16.
    Ibrahim, A., Sadka, A. (2014). Error resilience and concealment for multiview video coding. In Proceedings of the IEEE international symposium on broadband multimedia systems and broadcasting (pp. 1–5).Google Scholar
  17. 17.
    Memon, M., Li, J., Memon, I., & Arain, Q. (2017). GEO matching regions: multiple regions of interests using content based image retrieval based on relative locations. Multimedia Tools and Applications, 76(14), 15377–15411.CrossRefGoogle Scholar
  18. 18.
    Memon, M., Khan, A., Li, J., Shaikh, R., & Memon, I., Deep, S. (2014). Content based image retrieval based on geo-location driven image tagging on the social web. In 11th IEEE international computer conference on wavelet active media technology and information processing (ICCWAMTIP) (pp. 280–283).Google Scholar
  19. 19.
    Vetrivel, S., & Athisha, G. (2014). Video streaming: Single and compound report transcoding method. Asian Journal of Information Technology, 13, 300–307.Google Scholar
  20. 20.
    Memon, M., Shaikh, R., Li, J., Khan, A., Memon, I., & Deep, S. (2014). Unsupervised feature approach for content based image retrieval using principal component analysis. In 11th IEEE international computer conference on wavelet active media technology and information processing (ICCWAMTIP) (pp. 271–275).Google Scholar
  21. 21.
    Memon, M., Li, J., Memon, I., Shaikh, R., & Mangi, F. (2015). Efficient object identification and multiple regions of interest using CBIR based on relative locations and matching regions. In 12th IEEE international computer conference on Wavelet active media technology and information processing (ICCWAMTIP) (pp. 247–250).Google Scholar
  22. 22.
    Salim, O., Xiang, W., & Leis, J. (2013). An efficient unequal error protection scheme for 3-D video transmission. In Proceedings of the IEEE wireless communications and networking conference (WCNC) (pp. 4077–4082).Google Scholar
  23. 23.
    Huo, Y., El-Hajjar, M., & Hanzo, L. (2013). Inter-layer FEC aided unequal error protection for multilayer video transmission in mobile TV. IEEE Transactions on Circuits and Systems for Video Technology, 23(9), 1622–1634.CrossRefGoogle Scholar
  24. 24.
    Yan, B., & Zhou, J. (2012). Efficient frame concealment for depth image-based 3-d video transmission. IEEE Transactions on Multimedia, 14(3), 936–941.CrossRefGoogle Scholar
  25. 25.
    Liu, Y., Wang, J., & Zhang, H. (2010). Depth image-based temporal error concealment for 3-d video transmission. IEEE Transactions on Circuits and Systems for Video Technology, 20(4), 600–604.CrossRefGoogle Scholar
  26. 26.
    Chung, T., Sull, S., & Kim, C. (2011). Frame loss concealment for stereoscopic video plus depth sequences. IEEE Transactions on Consumer Electronics, 57(3), 1336–1344.CrossRefGoogle Scholar
  27. 27.
    Tai, S. C., Wang, C. C., Hong, C. S., & Luo, Y. C. (2016). An effiicient full frame algorithm for object-based error concealment in 3D depth-based video. Multimedia tools and applications, 75(16), 9927–9947.CrossRefGoogle Scholar
  28. 28.
    Khattak, S., Maugey, T., & Hamzaoui, R. (2016). Temporal and inter-view consistent error concealment technique for multiview plus depth video. IEEE Transactions on Circuits and Systems for Video Technology, 26(5), 829–840.CrossRefGoogle Scholar
  29. 29.
    Assunçao, P., Marcelino, S., Soares, S., & Faria, S. (2016). Spatial error concealment for intra-coded depth maps in multiview video-plus-depth. Multimedia Tools and Applications, 76(12), 13835–13858.CrossRefGoogle Scholar
  30. 30.
    Wang, H., & Wang, X. (2016). Important macroblock distinction model for multi-view plus depth video transmission over error-prone network. Multimedia Tools and Applications, 1–23.Google Scholar
  31. 31.
    H.264/AVC codec; September 2016. http://iphome.hhi.de/suehring/tml/.
  32. 32.
    Xiang, X., Zhao, D., Wang, Q., Ji, X., & Gao, W. (2007). A novel error concealment method for stereoscopic video coding. In Proceedings of the IEEE international conference on image processing (pp. 101–104).Google Scholar
  33. 33.
    Gao, Z., & Lie, W. (2004). Video error concealment by using Kalman-filtering technique. In Proceedings of the IEEE international symposium on circuits and systems (pp. 69–72).Google Scholar
  34. 34.
    Cui, S., Huijuan, C., & Kun, T. (2012). An effective error concealment scheme for heavily corrupted H.264/AVC videos based on Kalman filtering. Journal of Signal, Image and Video Processing, 8(8), 1533–1542.CrossRefGoogle Scholar
  35. 35.
    Hwang, M., Kim, J., Duong, D., & Ko, S. (2008). Hybrid temporal error concealment methods for block-based compressed video transmission. IEEE Transactions on Broadcasting, 54(2), 198–207.CrossRefGoogle Scholar
  36. 36.
    Chen, M., Chen, L., & Weng, R. (1997). Error concealment of lost motion vectors with overlapped motion compensation. IEEE Transactions on Circuits and Systems for Video Technology, 7(3), 560–563.CrossRefGoogle Scholar
  37. 37.
    ISO/IEC JTC1. (2006). Common test conditions for multiview video coding (JVT-U207) (pp 1–9).Google Scholar
  38. 38.
    WD 4 reference software for multiview video coding (mvc); August 2016. http://wftp3.itu.int/av-arch/jvt-site/2009_01_Geneva/JVT-AD207.zip.
  39. 39.
    Lie, W., Lee, C., Yeh, C., & Gao, Z. (2014). Motion vector recovery for video error concealment by using iterative dynamic-programming optimization. IEEE Transactions on Multimedia, 16(1), 216–227.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2017

Authors and Affiliations

  • W. El-Shafai
    • 1
    Email author
  • S. El-Rabaie
    • 1
  • M. M. El-Halawany
    • 1
  • Fathi E. Abd El-Samie
    • 1
  1. 1.Department of Electronics and Electrical Communications Engineering, Faculty of Electronic EngineeringMenoufia UniversityMenoufEgypt

Personalised recommendations