Wireless Networks

, Volume 25, Issue 4, pp 1431–1442 | Cite as

Secure communication in untrusted relay selection networks with wireless energy harvesting

  • Van Phu Tuan
  • Hyung Yun KongEmail author


In this paper, we consider the secrecy performance of an energy-harvesting relaying system with Kth best partial relay selection where the communication of a multi-antenna source-destination pair is assisted via single-antenna untrusted relays. To protect confidential source messages from untrusted relays, transmit beamforming and destination jamming signals are used. The relays are energy-constrained nodes that use the power-splitting policy to harvest energy through the wireless signals from both the source and destination. For performance evaluation, closed-form expressions of the secrecy outage probability and average secrecy capacity (ASC) are derived for Nakagami-m fading channels. The analytical results are confirmed via Monte Carlo simulations. Numerical results provide valuable insights into the effect of various system parameters, such as relay location, number of relays, and power splitting ratio, on the secrecy performance. Specifically, the maximum ASC is achieved when the relay is located between the source and destination.


Cooperative communication Energy harvesting Physical layer security Untrusted relaying Destination-assisted jamming Relay selection 


  1. 1.
    Nasir, A., Zhou, X., Durrani, S., & Kennedy, R. (2013). Relaying protocols for wireless energy harvesting and information processing. IEEE Transactions on Communications, 12(7), 3622–3636.Google Scholar
  2. 2.
    Zhu, G., Zhong, C., Suraweera, H. A., Karagiannidis, G. K., Zhang, Z., & Tsiftsis, T. A. (2015). Wireless information and power transfer in relay systems with multiple antennas and interference. IEEE Transactions on Communications, 63(4), 1400–1418.CrossRefGoogle Scholar
  3. 3.
    Zhou, X., Zhang, R., & Ho, C. K. (2013). Wireless information and power transfer: Architecture design and rate-energy tradeoff. IEEE Transactions on Communications, 61(11), 4754–4767.CrossRefGoogle Scholar
  4. 4.
    Zhong, C., Suraweera, H., Zheng, G., Krikidis, I., & Zhang, Z. (2014). Wireless information and power transfer with full duplex relaying. IEEE Transactions on Communications, 62(10), 3447–3461.CrossRefGoogle Scholar
  5. 5.
    Son, P. N., & Kong, H. Y. (2015). Cooperative communication with energy-harvesting relays under physical layer security. IET Communications, 9(17), 2131–2139.CrossRefGoogle Scholar
  6. 6.
    Hanif, M., Yang, H. C., & Alouini, M. S. (2014). Capacity bounds for kth best path selection over generalized fading channels. IEEE Commu. Lett., 18(2), 261–264.CrossRefGoogle Scholar
  7. 7.
    Ahn, K. S., Choi, S. W., & Ahn, J. M. (2015). Secrecy performance of maximum ratio diversity with channel estimation error. IEEE Signal Processing Letters, 22(11), 2167–2171.CrossRefGoogle Scholar
  8. 8.
    Xing, H., Liu, L., & Zhang, R. (2016). Secrecy wireless information and power transfer in fading wiretap channel. IEEE Transactions on Vehicular Technology, 65(1), 180–190.CrossRefGoogle Scholar
  9. 9.
    Liu, L., Zhang, R., & Chua, K. C. (2014). Secrecy wireless information and power transfer with MISO beamforming. IEEE Transactions on Signal Processing, 62(7), 1850–1863.MathSciNetCrossRefzbMATHGoogle Scholar
  10. 10.
    Zhang, H., Li, C., Huang, Y., & Yang, L. (2016). Secure beamforming for SWIPT in multiuser MISO broadcast channel with confidential messages. IEEE Communications Letters, 19(8), 1347–1350.CrossRefGoogle Scholar
  11. 11.
    Kalamkar, S. S., & Banerjee, A. (2016). Secure communication via a wireless energy harvesting untrusted relay. IEEE Transactions on Vehicular Technology, 66(3), 2199–2213.CrossRefGoogle Scholar
  12. 12.
    Hoang, T. M., Duong, T. Q., Vo, N. S., & Kundu, C. (2017). Physical layer security in cooperative energy harvesting networks with a friendly jammer. IEEE Wireless Communications Letters, 6(2), 174–177.CrossRefGoogle Scholar
  13. 13.
    Khafagy, M. G., Ismail, A., Alouini, M. S., & Assa, S. (2015). Efficient cooperative protocols for full duplex relaying over Nakagami-m fading channels. IEEE Transactions on Wireless Communications, 14(6), 3456–3470.CrossRefGoogle Scholar
  14. 14.
    Gradshteyn, I. S., Ryzhik, I. M., Jeffrey, A., & Zwillinger, D. (2007). Table of integral, series and products (7th ed.). Amsterdam: Elsevier.Google Scholar
  15. 15.
    David, H. A., & Nagaraja, H. N. (2003). Order statistics (3rd ed.). New York: Wiley.CrossRefzbMATHGoogle Scholar
  16. 16.
    Olver, F. W. J., Lozier, D. W., Boisvert, R. F., & Clark, C. W. (2010). NIST handbook of mathematical functions. Cambridge: Cambridge University Press.zbMATHGoogle Scholar
  17. 17.
    Zhu, G., Zhong, C., Suraweera, H. A., Zhang, Z., Yuen, C., & Yin, R. (2014). Ergodic capacity comparison of different relay precoding schemes in dual-hop AF systems with co-channel interferer. IEEE Transactions on Communications, 62(7), 2314–2328.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2017

Authors and Affiliations

  1. 1.Department of Electrical EngineeringUniversity of UlsanUlsanSouth Korea

Personalised recommendations