Wireless Networks

, Volume 25, Issue 2, pp 889–902 | Cite as

Automatic and dynamic network establishment for linear WSNs

  • Moussa Dethie SarrEmail author
  • François Delobel
  • Michel Misson
  • Ibrahima Niang


The deployment of wireless sensor networks (WSNs) in the mostly linear large structures, such as rivers, pipelines, etc, suffers from being the worst case for classical addressing schemes, e.g. distributed address assignment mechanism (DAAM) or stochastic addressing for Zigbee. Using DAAM for physical topologies composed of long lines of nodes connected together wastes addresses and generates orphan nodes. We show in this paper the inherent limitations of classical (DAAM, stochastic) and specialized (usually cluster-orientated) addressing schemes for Linear WSNs. DiscoProto, is an addressing and routing scheme which builds a logical network corresponding to a corresponding physical linear network without any knowledge of physical topology. In this paper, we show thanks to a realistic simulation using Castalia (Omnet based simulator) that DiscoProto avoids waste of addresses and allows a high association ratio. We also propose a dynamic version of our protocol called Dynamic DiscoProto in the second part of the paper. Dynamic DiscoProto allows to add new nodes or new branches in an existing linear network.


Linear wireless sensor networks Addressing Routing Automatic deployment Topology discovery Clustering 


  1. 1.
    Abbasi, A. A., & Younis, M. (2007). A survey on clustering algorithms for wireless sensor networks. Computer Communications, 30, 2826–2841.CrossRefGoogle Scholar
  2. 2.
    Akhtar, F., & Rehmani, M. H. (2015). Energy replenishment using renewable and traditional energy resources for sustainable wireless sensor networks: A review. Renewable and Sustainable Energy Reviews, 45, 769–784.CrossRefGoogle Scholar
  3. 3.
    Akyildiz, I. F., Su, W., Sankarasubramaniam, Y., & Cayirci, E. (2002). A survey on sensor networks. IEEE Communications Magazine, 40(8), 102–114.CrossRefGoogle Scholar
  4. 4.
    Alliance, Z. (2008). ZigBee specification. ZigBee Standard Organization, zigbee document 053474r17 edn.Google Scholar
  5. 5.
    Almazyad, A. S., Seddiq, Y. M., Alotaibi, A. M., Al-nasheri, A. Y., BenSaleh, M. S., Obeid, A. M., et al. (2014). A proposed scalable design and simulation of wireless sensor network-based long-distance water pipeline leakage monitoring system. Sensors, 14(2), 3557–3577.CrossRefGoogle Scholar
  6. 6.
    Amjad, M., Sharif, M., Afzal, M. K., & Kim, S. W. (2016). TinyOS-new trends, comparative views, and supported sensing applications: A review. IEEE Sensors Journal, 16(9), 2865–2889.CrossRefGoogle Scholar
  7. 7.
    Baker, C. R., Armijo, K., Belka, S., Benhabib, M., Bhargava, V., & Burkhart, N. et al. (2007). Wireless sensor networks for home health care. In 21st International conference on advanced information networking and applications workshops, AINAW’07 (Vol. 2, pp. 832–837).Google Scholar
  8. 8.
    Boulis, A. Castalia: A simulator for wireless sensor networks.
  9. 9.
    Casey, K., Lim, A. S., & Dozier, G. V. (2008). A sensor network architecture for tsunami detection and response. IJDSN, 4(1), 28–43.Google Scholar
  10. 10.
    Cunha, A. (2007). On the use of IEEE 802.15.4/zigbee as federating communication protocols for wireless sensor networks. Technical report, Polytechnic Institute of porto (ISEP-IPP)Google Scholar
  11. 11.
    Ferreira, M., Fernandes, R., Conceição, H., Viriyasitavat, W., & Tonguz, O. K. (2010). Self-organized traffic control. In Proceedings of the seventh ACM international workshop on VehiculAr InterNETworking, VANET ’10 (pp. 85–90). ACM.Google Scholar
  12. 12.
    Hsieh, H. C., Chang, K. D., Wang, L. F., Chen, J. L., & Chao, H. C. (2016). ScriptIoT: A script framework for and internet-of-things applications. IEEE Internet of Things Journal, 3(4), 628–636.CrossRefGoogle Scholar
  13. 13.
    Jawhar, I., Mohamed, N., & Agrawal, D. P. (2011). Linear wireless sensor networks: Classification and applications. Journal of Network and Computer Applications, 34, 1671–1682.CrossRefGoogle Scholar
  14. 14.
    Jawhar, I., Mohamed, N., & Shuaib, K. (2007). A framework for pipeline infrastructure monitoring using wireless sensor networks. In Wireless Telecommunications Symposium, WTS 2007. IEEE.Google Scholar
  15. 15.
    JeonGil, K., Tia, G., & Andreas, T. (2009). Empirical study of a medical sensor application in an Urban Emergency Department. In 4th International ICST conference on body area networks, BODYNETS 2009 (p. 10). ICST.Google Scholar
  16. 16.
    Kafi, M. A., Challal, Y., Djenouri, D., Doudou, M., Bouabdallah, A., & Badache, N. (2013). A study of wireless sensor networks for urban traffic monitoring: Applications and architectures. Procedia Computer Science, 19, 617–626.CrossRefGoogle Scholar
  17. 17.
    Kim, S., Pakzad, S., Culler, D., Demmel, J., Fenves, G., Glaser, S. et al. (2007). Health monitoring of civil infrastructures using wireless sensor networks. In Proceedings of the 6th international conference on information processing in sensor networks. ACM Press.Google Scholar
  18. 18.
    Ko, J., Lim, J. H., Chen, Y., Musvaloiu-E, R., Terzis, A., Masson, G. M., et al. (2010). Medisn: Medical emergency detection in sensor networks. ACM Transactions on Embedded Computing Systems, 10, 11.CrossRefGoogle Scholar
  19. 19.
    Lorincz, K., Welsh, M., Marcillo, O., Johnson, J., Ruiz, M., & Lees, J. (2006). Deploying a wireless sensor network on an active volcano. IEEE Internet Computing, 10, 18–25.Google Scholar
  20. 20.
    Ma, Y., Richards, M., Ghanem, M., Guo, Y., & Hassard, J. (2008). Air pollution monitoring and mining based on sensor grid in London. Sensors, 8, 3601–3623.CrossRefGoogle Scholar
  21. 21.
    Mouhamed, A., Axel, S. (2014). Free space range measurements with semtech lora technology. In 2014 2nd International Symposium on wireless systems Within the Conferences on Intelligent Data Acquisition and Advanced Computing Systems (pp. 19–23).Google Scholar
  22. 22.
    Ndoye, E. H. M., Jacquet, F., Misson, M., Niang, I. (2014). Using a token approach for the MAC layer of linear sensor networks: Impact of the node position on the packet delivery. In 2014 IFIP wireless days, WD 2014, Rio de Janeiro, Brazil, November 12–14.Google Scholar
  23. 23.
    Pan, M. S., Fang, H. W., Liu, Y. C., Tseng, Y. C. (2008). Address assignment and routing schemes for zigbee-based long-thin wireless sensor networks. In IEEE vehicular technology conference ’08, Spring 2008 (pp. 173–177).Google Scholar
  24. 24.
    Pan, M. S., Tsai, C. H., & Tseng, Y. C. (2009). The orphan problem in ZigBee wireless networks. IEEE Transactions on Mobile Computing, 8, 1573–1584.CrossRefGoogle Scholar
  25. 25.
    Park, S., Lee, E. J., Ryu, J. H., Joo, S. S., & Kim, H. S. (2009). Distributed borrowing addressing scheme for ZigBee/IEEE 802.15.4 wireless sensor networks. ETRI Journal, 31, 525–533.CrossRefGoogle Scholar
  26. 26.
    Rashid, B., & Rehmani, M. H. (2016). Applications of wireless sensor networks for urban areas: A survey. Journal of Network and Computer Applications, 60, 192–219.CrossRefGoogle Scholar
  27. 27.
    Sarr, M. D., Delobel, F., Misson, M., Niang, I. (2012). Automatic discovery of topologies and addressing for linear wireless sensors networks. In Wireless days (WD), 2012 IFIP (pp. 1–7). IEEE.Google Scholar
  28. 28.
    Society, I. C. (2006). Part 15.4: Wireless medium access control (MAC) and physical layer (PHY) specifications for low-rate wirelees personal area networks (WPANs). IEEE Computer Society, IEEE std 802.15.4 2006 edn.Google Scholar
  29. 29.
    Stoianov, I., Nachman, L., Madden, S., Tokmouline, T. (2007). Pipeneta wireless sensor network for pipeline monitoring. In Proceedings of the 6th international conference on information processing in sensor networks, IPSN ’07 (pp. 264–273). ACM.Google Scholar
  30. 30.
    Tselishchev, Y., Boulis, A., Libman, L. (2010). Experiences and lessons from implementing a wireless sensor network mac protocol in the castalia simulator. In Wireless communications and networking conference (WCNC), 2010 IEEE. IEEE.Google Scholar
  31. 31.
    Umer, T., Amjad, M., Afzal, M. K., Aslam, M. (2016). Hybrid rapid response routing approach for delay-sensitive data in hospital body area sensor network. In Proceedings of the 7th international conference on computing communication and networking technologies. ICCCNT .Google Scholar
  32. 32.
    Ye, W., Heidemann, J. S., Estrin, D. (2002). An energy-efficient mac protocol for wireless sensor networks. In INFOCOM 2002. Twenty-first annual joint conference of the IEEE computer and communications societies. Proceedings. IEEE.Google Scholar
  33. 33.
    Yick, J., Mukherjee, B., & Ghosal, D. (2008). Wireless sensor network survey. Computer Networks, 52(12), 2292–2330.CrossRefGoogle Scholar
  34. 34.
    Zimmerling, M., Dargie, W., Reason, J. M. (2008). Localized power-aware routing in linear wireless sensor networks. In Proceedings of the 2nd ACM international conference on context-awareness for self-managing systems, CASEMANS ’08. ACM.Google Scholar
  35. 35.
    Zuniga, M., Krishnamachari, B. (2004). Analyzing the transitional region in low power wireless links. In Proceedings of the first IEEE international conference on sensor and ad hoc communications and networks (SECON).Google Scholar

Copyright information

© Springer Science+Business Media, LLC 2017

Authors and Affiliations

  1. 1.Clermont Auvergne University / LIMOS CNRS - Complexe scientifique des CézeauxAubiére cedexFrance
  2. 2.Cheikh Anta Diop de Dakar University (UCAD) / LIDDakar-FannSenegal

Personalised recommendations