Advertisement

Wireless Networks

, Volume 25, Issue 2, pp 845–859 | Cite as

A combined public-key scheme in the case of attribute-based for wireless body area networks

  • Jiaojiao Hong
  • Bo Liu
  • Qianyuan Sun
  • Fagen LiEmail author
Article
  • 55 Downloads

Abstract

The wireless body area networks (WBANs) is a practical application model of Internet of things. It can be used in many scenarios, especially for e-healthcare. The medical data of patients is collected by sensors and transmitted using wireless communication techniques. Different users can access the patient’s data with different privileges. Access control is a crucial problem in WBANs. In this paper, we design a new security mechanism named combined public-key scheme in the case of attribute-based (CP-ABES) to address the user access control in WBANs. Our scheme combines encryption and digital signatures. It uses ciphertext-policy attribute-based encryption to achieve data confidentially, access control, and ciphertext-policy attribute-based signature to realize the identity authentication. The access policy used in our scheme is threshold. Based on this feature, the length of ciphertext and signature of our scheme is constant. Our scheme provides confidentiality, unforgeability, signer privacy and collusion resistance. We prove the efficiency of our scheme theoretically and analyze the security level and energy consumption of our scheme.

Keywords

Wireless body area networks e-healthcare Attribute-based cryptography Combined public-key Access control 

Notes

Acknowledgements

This work was supported in part by the National Natural Science Foundation of China (Grant No. 61272525), the Fundamental Research Funds for the Central Universities (Grant No. ZYGX2016J081) and the Laboratory for Internet of Things and Mobile Internet Technology of Jiangsu Province (Grant No. JSWLW-2017-006).

References

  1. 1.
    Weber, R. H. (2010). Internet of Things—New security and privacy challenges. Computer Law & Security Review, 26(1), 23–30. doi: 10.1016/j.clsr.2009.11.008.Google Scholar
  2. 2.
    Tian, Y., Peng, Y. B., Peng, X. G., & Li, H. B. (2014). An attribute-based encryption scheme with revocation for fine-grained access control in wireless body area networks. International Journal of Distributed Sensor Networks. doi: 10.1155/2014/259798.Google Scholar
  3. 3.
    Li, M., Lou, W., & Ren, K. (2010). Data security and privacy in wireless body area networks. IEEE Wireless Communications, 17(1), 51–58. doi: 10.1109/MWC.2010.5416350.Google Scholar
  4. 4.
    Sahai A., & Waters, B. (2005). Fuzzy identity-based encryption. In Advances in CryptologyEUROCRYPT (vol. 3494, pp. 457–473). Berlin: Springer. doi: 10.1007/11426639_27
  5. 5.
    Waters, B., Bethencourt, J., & Sahai, A. (2007). Ciphertext-policy attribute-based encryption. In Proceedings of the IEEE Symposium on Security and Privacy (pp. 321–334). doi: 10.1109/SP.2007.11
  6. 6.
    Goyal, V., Pandey, O., Sahai, A., & Waters, B. (2006). Attribute-based encryption for fine-grained access control of encrypted data. In Proceedings of the 13th ACM conference on Computer and communications security (CCS ‘06) (pp. 89–98). doi: 10.1145/1180405.1180418
  7. 7.
    Maji, H. K., Prabhakaran, M., & Rosulek, M. (2011). Attribute-based signatures. In Topics in CryptologyCT-RSA (vol. 6558, pp. 376–392). Berlin: Springer. doi: 10.1007/978-3-642-19074-2_24
  8. 8.
    Lewko, A., Okamoto, T., Sahai, A., Takashima, K., & Waters, B. (2010). Fully secure functional encryption: attribute-based encryption and (hierarchical) inner product encryption. In Advances in CryptologyEUROCRYPT (vol. 6110, pp. 62–91). Berlin: Springer. doi: 10.1007/978-3-642-13190-5_4
  9. 9.
    Lewko, A., & Waters, B. (2011). Decentralizing attribute-based encryption. In Advances in CryptologyEUROCRYPT (vol. 6632, pp. 568–588). Berlin: Springer. doi: 10.1007/978-3-642-20465-4_31
  10. 10.
    Cheung, L., & Newport, C. (2007). Provably secure ciphertext policy ABE. In Proceedings of the 14th ACM conference on Computer and communications security (CCS ‘07) (pp. 456–465). doi: 10.1145/1315245.1315302
  11. 11.
    Nishide, T., Yoneyama, K., & Ohta, K. (2008). Attribute-based encryption with partially hidden encryptor-specified access structure. Applied Cryptography and Network Security, 5037, 111–129. doi: 10.1007/978-3-540-68914-0_7.zbMATHGoogle Scholar
  12. 12.
    Shahandashti, S. F., & Naini, R. S. (2009). Threshold attribute-based signatures and their application to anonymous credentials systems. In Progress in CryptologyAFRICACRYPT (vol. 5580, pp. 198–216). Berlin: Springer. doi: 10.1007/978-3-642-02384-2_13
  13. 13.
    Okamoto, T., & Takashima, K. (2014). Efficient attribute-based signatures for non-montone predicates in the standard model. IEEE Transaction on Cloud Computing, 2(4), 409–421. doi: 10.1109/TCC.2014.2353053.Google Scholar
  14. 14.
    Emura, K., Miyaji, A., Nomura, A., Omote, K., & Soshi, M. (2009). A ciphertext-policy attribute encryption scheme with constant ciphertext length. Information Security Practice and Experience, 5451, 13–23. doi: 10.1007/978-3-642-00843-6_2.zbMATHGoogle Scholar
  15. 15.
    Attrapadung, N., Hettanz, J., Laguillaumie, F., Libert, B., Panafieu, E., & Rafols, C. (2012). Attribute-based encryption schemes with constant-size ciphertexts. Theoretical Computer Science, 422(9), 15–38. doi: 10.1016/j.tcs.2011.12.004.MathSciNetzbMATHGoogle Scholar
  16. 16.
    Wenqiang, W., & Shaozhen, C. (2010). Attribute-based ring signature scheme with constant-size signature. IET Information Security, 4(2), 104–110. doi: 10.1049/iet-ifs.2009.0189.Google Scholar
  17. 17.
    Haber, S., & Pinkas, B. (2001). Securely combining public-key cryptosystems, In Proceedings of the 8th ACM conference on Computer and Communications Security (CCS ‘01) (pp. 215–224) doi: 10.1145/501983.502013
  18. 18.
    Vasco, M. I. G., Hess, F., & Steinwandt, R. (2008). Combined (identity-based) public key schemes. Journal of IACR Cryptology ePrint Archive.Google Scholar
  19. 19.
    Ge, A. J., Zhang, R., Chen, C., Ma, C. G., & Zhang, Z. F. (2012). Threshold ciphertext policy attribute-based encryption with constant size ciphertexts. Information Security and Privacy, 7372, 336–349. doi: 10.1007/978-3-642-31448-3_25.zbMATHGoogle Scholar
  20. 20.
    Ge, A. J., Ma, C. G., & Zhang, Z. F. (2012). Attribute-based signature scheme with constant size signature in the standard model. IET Information Security, 6(2), 47–54. doi: 10.1049/iet-ifs.2011.0094.Google Scholar
  21. 21.
    Cao, H. S., Leung, V., Chow, C., & Chan, H. (2009). Enabling technologies for wireless body area networks: a survey and outlook. IEEE Communications Magazine, 47(12), 84–93. doi: 10.1109/MCOM.2009.5350373.Google Scholar
  22. 22.
    Wang, H. D., & Li, Q. (2006). Distributed user access control in sensor networks. Distributed Computing in Sensor Systems, 4026, 305–320. doi: 10.1007/11776178_19.Google Scholar
  23. 23.
    Wang, H. D., & Li, Q. (2012). Achieving distributed user access control in sensor networks. Ad Hoc Networks, 10(3), 273–283. doi: 10.1016/j.adhoc.2011.01.011.Google Scholar
  24. 24.
    Liu, D. G. (2007). Efficient and distributed access control for sensor networks. Distributed Computing in Sensor Systems, 4549, 21–35. doi: 10.1007/978-3-540-73090-3_2.Google Scholar
  25. 25.
    Zhang, W. S., Song, H., Zhu, S. C., & Cao, G. H. (2005). Least privilege and privilege deprivation: towards tolerating mobile sink compromises in wireless sensor networks. In Proceedings of the 6th ACM international symposium on Mobile ad hoc networking and computing (MobiHoc’05) (pp. 378–389). doi: 10.1145/1062689.1062737.
  26. 26.
    Liu, W., Zhang, Y. C., Lou, W. J., & Fang, Y. G. (2006). Location-based compromise-tolerant security mechanisms for wireless sensor networks. IEEE Journalon Selected Areasin Communications, 24(2), 247–260. doi: 10.1109/JSAC.2005.861382.Google Scholar
  27. 27.
    Kim, I. T., & Hwang, S. O. ( 2011). An efficient identity-based broadcast signcryption scheme for wireless sensor networks. IEEE Wireless and Pervasive Computing (ISWPC) (pp. 1–6). doi:  10.1109/ISWPC.2011.5751323
  28. 28.
    Yu, S. C., Ren, K., & Lou, W. J. (2011). FDAC: Toward fine-grained distributed data accesscontrol in wireless sensor networks. IEEE Transactions on Parallel and Distributed Systems, 22(4), 673–686. doi: 10.1109/TPDS.2010.130.Google Scholar
  29. 29.
    Hu, C. Q., Zhang, N., Li, H. J., Cheng, X. Z., & Liao, X. F. (2013). Body area network security: a fuzzy attribute-based signcryption scheme. IEEE Journalon Selected Areasin Communications, 31(9), 37–46. doi: 10.1109/JSAC.2013.SUP.0513004.Google Scholar
  30. 30.
    Wang, C. J., Xu, X. L., Li, Y., & Shi, D. Y. (2015). Integrating ciphertext-policy attribute-based encryption with identity-based ring signature to enhance security and privacy in wireless body area networks. Information Security and Cryptology, 8957, 424–442. doi: 10.1007/978-3-319-16745-9_23.MathSciNetzbMATHGoogle Scholar
  31. 31.
    Chatterjee, S., Das, A. K., & Sing, J. K. (2014). A novel and efficient user access control scheme for wireless body area sensor networks. Computer and Information Sciences, 26(2), 181–201. doi: 10.1016/j.jksuci.2013.10.007.Google Scholar
  32. 32.
    Chen, C., Chen, J., Lim, H. W., Zhang, Z. F., & Feng, D. G. (2012). Combined public-key schemes: The case of ABE and ABS. Provable Security, 7496, 53–69. doi: 10.1007/978-3-642-33272-2_5.MathSciNetzbMATHGoogle Scholar
  33. 33.
    Li, J., Au, M. H., Susio, W., Xie, D. Q., & Ren, K. (2010). Attribute-based signature and its applications. In Proceedings of the 5th ACM Symposium on Information, Computer and Communications Security(ASIACCS ‘10) (pp. 60–69). doi: 10.1145/1755688.1755697
  34. 34.
    Shim, K.-A., Lee, Y.-R., & Park, C.-M. (2013). EIBAS: An efficient identity-based broadcast authentication scheme in wireless sensor networks. Ad Hoc Networks, 11(1), 182–189. doi: 10.1016/j.adhoc.2012.04.015.Google Scholar
  35. 35.
    Cao, X., Kou, W., Dang, L., & Zhao, B. (2008). IMBAS: Identity-based multiuser broadcast authentication in wireless sensor networks. Computer Communications, 31(4), 659–667. doi: 10.1016/j.comcom.2007.10.017.Google Scholar
  36. 36.
    Li, F., Zheng, Z., & Jin, C. (2016). Secure and efficient data transmission in the Internet of Things. Telecommunication Systems, 62(1), 111–122. doi: 10.1007/s11235-015-0065-y.Google Scholar
  37. 37.
    Ma, C., Xue, K., & Hong, P. (2014). Distributed access control with adaptive privacy preserving property for wireless sensor networks. Security and Communication Networks, 7(4), 759–773. doi: 10.1002/sec.777.Google Scholar
  38. 38.
    Shim, K. A. (2014). S2DRP: Secure implementations of distributed reprogramming protocol for wireless sensor networks. Ad Hoc Networks, 19, 1–8. doi: 10.1016/j.adhoc.2014.01.011.Google Scholar

Copyright information

© Springer Science+Business Media, LLC 2017

Authors and Affiliations

  1. 1.Center for Cyber Security, School of Computer Science and EngineeringUniversity of Electronic Science and Technology of ChinaChengduChina
  2. 2.Laboratory for Internet of Things and Mobile Internet Technology of Jiangsu ProvinceHuaiyin Institute of TechnologyHuaianChina

Personalised recommendations