Wireless Networks

, Volume 25, Issue 2, pp 573–584 | Cite as

A comprehensive survey on mobile data offloading in heterogeneous network

  • Tong Wang
  • Pengcheng Li
  • Xibo Wang
  • Yunfeng Wang
  • Tianhao Guo
  • Yue CaoEmail author


With the explosive increase of smartphones, tablets and laptops, the past few years have witnessed the exponential rise of mobile data traffic. This has already caused data overload on cellular networks. As a result, cellular networks can not offer sufficient capacity to accommodate the numerous mobile data requirements. Therefore, it is an urgent agenda for cellular network operators to find out immediate solutions. As a promising way to tackle this problem, mobile data offloading is considered to transfer traffic which originally generates towards cellular network to complementary networks. This article aims to present a comprehensive overview of mobile data offloading. According to the participation of infrastructure, we classify the existing strategies into two major categories, namely infrastructure-based strategies and infrastructure-less strategies. Then, we review the technical aspects and discuss the state of the art in each category. After discussing advantages and disadvantages of these strategies, we also introduce the performance metrics used in offloading system, as well as the future challenges.


Mobile data offloading Cellular networks Infrastructure-based networks Opportunistic communication Delay tolerant networks 



This paper is supported by the National Natural Science Foundation (61102105), the National Research Foundation for the Doctoral Program of Higher Education of China (20102304120014), the Natural Science Foundation of Heilongjiang Province of China (F201029), and the Fundamental Research Funds for the Central Universities (HEUCF1408).


  1. 1.
    Ahn, C. W., & Chung, S. H. (2017). SDN-based mobile data offloading scheme using a femtocell and WiFi networks. Mobile Information Systems, 2017, 1–15.CrossRefGoogle Scholar
  2. 2.
    Aijaz, A., Aghvami, H., & Amani, M. (2013). A survey on mobile data offloading: Technical and business perspectives. IEEE Wireless Communications, 20(2), 104–112.CrossRefGoogle Scholar
  3. 3.
    Asadi, A., & Mancuso, V. (2013). WiFi direct and LTE D2D in action. In 2013 IFIP wireless days (WD) (vol. 143, pp. 1–8). IEEE.Google Scholar
  4. 4.
    Balasubramanian, A., Mahajan, R., & Venkataramani, A. (2010). Augmenting mobile 3G using WiFi. In Proceedings of the 8th international conference on mobile systems, applications, and services (pp. 209–222). ACM.Google Scholar
  5. 5.
    Barbera, M. V., Stefa, J., Viana, A. C., de Amorim, M. D., & Boc, M. (2011). VIP delegation: Enabling VIPs to offload data in wireless social mobile networks. In 2011 international conference on distributed computing in sensor systems and workshops (DCOSS) (pp. 1–8). IEEE.Google Scholar
  6. 6.
    Baştuğ, E., Bennis, M., & Debbah, M. (2014). Social and spatial proactive caching for mobile data offloading. In 2014 IEEE international conference on communications workshops (ICC) (pp. 581–586). IEEE.Google Scholar
  7. 7.
    Boccardi, F., Heath, R. W., Lozano, A., Marzetta, T. L., & Popovski, P. (2014). Five disruptive technology directions for 5G. IEEE Communications Magazine, 52(2), 74–80.CrossRefGoogle Scholar
  8. 8.
    Burgess, J., Gallagher, B., Jensen, D., & Levine, B. N. (2006). Maxprop: Routing for vehicle-based disruption-tolerant networks. In Proceedings IEEE INFOCOM 2006. 25th IEEE international conference on computer communication (pp. 1–11). IEEE.Google Scholar
  9. 9.
    Calin, D., Claussen, H., & Uzunalioglu, H. (2010). On femto deployment architectures and macrocell offloading benefits in joint Macro–Femto deployments. IEEE Communications Magazine, 48(1), 26–32.CrossRefGoogle Scholar
  10. 10.
    Cao, Y., & Sun, Z. (2013). Routing in delay/disruption tolerant networks: A taxonomy, survey and challenges. IEEE Communications Surveys Tutorials, 15(2), 654–677.CrossRefGoogle Scholar
  11. 11.
    Cao, Y., Sun, Z., Wang, N., Yao, F., & Cruickshank, H. (2013). Converge-and-diverge: A geographic routing for delay/disruption-tolerant networks using a delegation replication approach. IEEE Transactions on Vehicular Technology, 62(5), 2339–2343.CrossRefGoogle Scholar
  12. 12.
    Chandhar, P., & Das, S. S. (2013). Analytical evaluation of offloading gain in Macrocell–Femtocell OFDMA networks. In 2013 IEEE 77th vehicular technology conference (VTC Spring) (pp. 1–6). IEEE.Google Scholar
  13. 13.
    Chandrasekaran, G., Wang, N., & Tafazolli, R. (2015). Caching on the move: Towards D2D-based information centric networking for mobile content distribution. In 2015 IEEE 40th conference on local computer networks (LCN) (pp. 312–320). IEEE.Google Scholar
  14. 14.
    Chandrasekhar, V., Andrews, J. G., & Gatherer, A. (2008). Femtocell networks: A survey. IEEE Communications magazine, 46(9), 59–67.CrossRefGoogle Scholar
  15. 15.
    Chen, Q., Yu, G., Maaref, A., Li, G., & Huang, A. (2016). Rethinking mobile data offloading for LTE in unlicensed spectrum. IEEE Transactions on Wireless Communications, 15(7), 4987–5000.Google Scholar
  16. 16.
    Cheng, N., Lu, N., Zhang, N., Shen, X. S., & Mark, J. W. (2014). Opportunistic WiFi offloading in vehicular environment: A queueing analysis. In 2014 IEEE global communications conference (GLOBECOM) (pp. 211–216). IEEE.Google Scholar
  17. 17.
    Cheng, N., Lu, N., Zhang, N., Shen, X. S., & Mark, J. W. (2014). Vehicular WiFi offloading: Challenges and solutions. Vehicular Communications, 1(1), 13–21.CrossRefGoogle Scholar
  18. 18.
    Cheng, N., Lu, N., Zhang, N., Zhang, X., Shen, X. S., & Mark, J. W. (2016). Opportunistic WiFi offloading in vehicular environment: A game-theory approach. IEEE Transactions on Intelligent Transportation Systems, 17(7), 1944–1955.CrossRefGoogle Scholar
  19. 19.
    Cheng, F., Yu, Y., Zhao, Z., Zhao, N., Chen, Y., & Lin, H. (2017). Power allocation for cache-aided small-cell networks with limited backhaul. IEEE Access, 5, 1272–1283.CrossRefGoogle Scholar
  20. 20.
    Cheung, M. H., & Huang, J. (2015). Dawn: Delay-aware Wi-Fi offloading and network selection. IEEE Journal on Selected Areas in Communications, 33(6), 1214–1223.CrossRefGoogle Scholar
  21. 21.
    Cisco, V. (2017). Cisco visual networking index: Global mobile data traffic forecast update, 2016–2021 white paper. Cisco Public Information [online].
  22. 22.
    Daly, E. M., & Haahr, M. (2007). Social network analysis for routing in disconnected delay-tolerant manets. In Proceedings of the 8th ACM international symposium on mobile ad hoc networking and computing (pp. 32–40). ACM.Google Scholar
  23. 23.
    Dimatteo, S., Hui, P., Han, B., & Li, V. O. (2011). Cellular traffic offloading through WiFi networks. In 2011 IEEE eighth international conference on mobile ad-hoc and sensor systems (pp. 192–201). IEEE.Google Scholar
  24. 24.
    Ding, A. Y., Hui, P., Kojo, M., & Tarkoma, S. (2012). Enabling energy-aware mobile data offloading for smartphones through vertical collaboration. In Proceedings of the 2012 ACM conference on CoNEXT student workshop (pp. 27–28). ACMGoogle Scholar
  25. 25.
    Elhami, G., Zehni, M., & Pakravan, M. R. (2015). A survey on heterogeneous access networks: Mobile data offloading. In 2015 23rd Iranian conference on electrical engineering (ICEE) (pp. 379–384). IEEE.Google Scholar
  26. 26.
    Gonzalez, M. C., Hidalgo, C. A., & Barabasi, A. L. (2008). Understanding individual human mobility patterns. Nature, 453(7196), 779–782.CrossRefGoogle Scholar
  27. 27.
    Ha, S., Sen, S., Joe-Wong, C., Im, Y., & Chiang, M. (2012). Tube: Time-dependent pricing for mobile data. ACM SIGCOMM Computer Communication Review, 42(4), 247–258.CrossRefGoogle Scholar
  28. 28.
    Han, B., Hui, P., Kumar, V., Marathe, M. V., Pei, G., & Srinivasan, A. (2010). Cellular traffic offloading through opportunistic communications: A case study. In Proceedings of the 5th ACM workshop on challenged networks (pp. 31–38). ACM.Google Scholar
  29. 29.
    Han, C., Dianati, M., Tafazolli, R., & Liu, X. (2012). A novel distributed asynchronous multichannel MAC scheme for large-scale vehicular ad hoc networks. IEEE Transactions on Vehicular Technology, 61(7), 3125–3138.CrossRefGoogle Scholar
  30. 30.
    Hui, P., Crowcroft, J., & Yoneki, E. (2011). Bubble rap: Social-based forwarding in delay-tolerant networks. IEEE Transactions on Mobile Computing, 10(11), 1576–1589.CrossRefGoogle Scholar
  31. 31.
    Izumikawa, H., & Katto, J. (2013). Rocnet: Spatial mobile data offload with user-behavior prediction through delay tolerant networks. In 2013 IEEE wireless communications and networking conference (WCNC) (pp. 2196–2201). IEEE.Google Scholar
  32. 32.
    Kang, X., Chia, Y. K., Sun, S., & Chong, H. F. (2014). Mobile data offloading through a third-party WiFi access point: An operator’s perspective. IEEE Transactions on Wireless Communications, 13(10), 5340–5351.CrossRefGoogle Scholar
  33. 33.
    Kim, S. H., & Han, S. J. (2012). Contour routing for peer-to-peer DTN delivery in cellular networks. In 2012 fourth international conference on communication systems and networks (COMSNETS 2012) (pp. 1–9). IEEE.Google Scholar
  34. 34.
    Lee, K., Lee, J., Yi, Y., Rhee, I., & Chong, S. (2013). Mobile data offloading: How much can WiFi deliver? IEEE/ACM Transactions on Networking (TON), 21(2), 536–550.CrossRefGoogle Scholar
  35. 35.
    Lee, J., Yi, Y., Chong, S., & Jin, Y. (2014). Economics of WiFi offloading: Trading delay for cellular capacity. IEEE Transactions on Wireless Communications, 13(3), 1540–1554.CrossRefGoogle Scholar
  36. 36.
    Lei, L., Zhong, Z., Lin, C., & Shen, X. (2012). Operator controlled device-to-device communications in LTE-advanced networks. IEEE Wireless Communications, 19(3), 96.CrossRefGoogle Scholar
  37. 37.
    Li, Y., Qian, M., Jin, D., Hui, P., Wang, Z., & Chen, S. (2014). Multiple mobile data offloading through disruption tolerant networks. IEEE Transactions on Mobile Computing, 13(7), 1579–1596.CrossRefGoogle Scholar
  38. 38.
    Li, Z., Shi, Y., Chen, S., & Zhao, J. (2015). Cellular traffic offloading through opportunistic communications based on human mobility. TIIS, 9(3), 872–885.Google Scholar
  39. 39.
    Lindgren, A., Doria, A., & Schelén, O. (2003). Probabilistic routing in intermittently connected networks. ACM SIGMOBILE mobile computing and communications review, 7(3), 19–20.CrossRefGoogle Scholar
  40. 40.
    Link, J. Á. B., Viol, N., Goliath, A., & Wehrle, K. (2009). Simbetage: Utilizing temporal changes in social networks for delay/disconnection tolerant networking. In 2009 6th annual international on mobile and ubiquitous systems: Networking and services, MobiQuitous (MobiQuitous’ 09) (pp. 1–2). IEEE.Google Scholar
  41. 41.
    Lu, X., Lio, P., & Hui, P. (2016). Distance-based opportunistic mobile data offloading. Sensors, 16(6), 878.CrossRefGoogle Scholar
  42. 42.
    Mayer, C. P., & Waldhorst, O. P. (2011). Offloading infrastructure using delay tolerant networks and assurance of delivery. In 2011 IFIP on wireless days (WD) (pp. 1–7). IEEE.Google Scholar
  43. 43.
    Mehmeti, F., & Spyropoulos, T. (2017). Performance analysis of mobile data offloading in heterogeneous networks. IEEE Transactions on Mobile Computing, 16(2), 482–497.CrossRefGoogle Scholar
  44. 44.
    Ngo, M. H., & Krishnamurthy, V. (2009). Optimality of threshold policies for transmission scheduling in correlated fading channels. IEEE Transactions on Communications, 57(8), 2474–2483.CrossRefGoogle Scholar
  45. 45.
    Onoue, Y., Tamai, M., & Yasumoto, K. (2014). Energy-constrained Wi-Fi offloading method using prefetching. In 2014 IEEE 79th vehicular technology conference (VTC Spring) (pp. 1–5). IEEE.Google Scholar
  46. 46.
    Pieterse, H., & Olivier, M. S. (2014). Bluetooth command and control channel. Computers and Security, 45, 75–83.CrossRefGoogle Scholar
  47. 47.
    Poularakis, K., Iosifidis, G., Pefkianakis, I., Tassiulas, L., & May, M. (2016). Mobile data offloading through caching in residential 802.11 wireless networks. IEEE Transactions on Network and Service Management, 13(1), 71–84.CrossRefGoogle Scholar
  48. 48.
    Qutqut, M. H., Al-Turjman, F. M., & Hassanein, H. S. (2013). MFW: Mobile femtocells utilizing WiFi: A data offloading framework for cellular networks using mobile femtocells. In 2013 IEEE international conference on communications (ICC) (pp. 6427–6431). IEEE.Google Scholar
  49. 49.
    Rebecchi, F., de Amorim, M. D., & Conan, V. (2014). Droid: Adapting to individual mobility pays off in mobile data offloading. In 2014 IFIP networking conference (pp. 1–9). IEEE.Google Scholar
  50. 50.
    Rebecchi, F., de Amorim, M. D., & Conan, V. (2016). Should i seed or should i not: On the remuneration of seeders in D2D offloading. In 2016 IEEE 17th international symposium on a world of wireless, mobile and multimedia networks (WoWMoM) (pp. 1–9). IEEE.Google Scholar
  51. 51.
    Rebecchi, F., De Amorim, M. D., Conan, V., Passarella, A., Bruno, R., & Conti, M. (2015). Data offloading techniques in cellular networks: A survey. IEEE Communications Surveys and Tutorials, 17(2), 580–603.CrossRefGoogle Scholar
  52. 52.
    Ristanovic, N., Le Boudec, J. Y., Chaintreau, A., & Erramilli, V. (2011). Energy efficient offloading of 3G networks. In 2011 IEEE eighth international conference on mobile ad-hoc and sensor systems (pp. 202–211). IEEE.Google Scholar
  53. 53.
    Sou, S. I. (2013). Mobile data offloading with policy and charging control in 3G pp core network. IEEE Transactions on Vehicular Technology, 62(7), 3481–3486.CrossRefGoogle Scholar
  54. 54.
    Spyropoulos, T., Psounis, K., & Raghavendra, C. S. (2005). Spray and wait: An efficient routing scheme for intermittently connected mobile networks. In Proceedings of the 2005 ACM SIGCOMM workshop on delay-tolerant networking (pp. 252–259). ACM.Google Scholar
  55. 55.
    Wang, K., Lau, F. C., Chen, L., & Schober, R. (2016). Pricing mobile data offloading: A distributed market framework. IEEE Transactions on Wireless Communications, 15(2), 913–927.CrossRefGoogle Scholar
  56. 56.
    Wang, T., Cao, Y., Zhou, Y., & Li, P. (2016). A survey on geographic routing protocols in delay/disruption tolerant networks (DTNS). International Journal of Distributed Sensor Networks, 2016(6), 8.Google Scholar
  57. 57.
    Wang, T., Sun, Y., Song, L., & Han, Z. (2015). Social data offloading in D2D-enhanced cellular networks by network formation games. IEEE Transactions on Wireless Communications, 14(12), 7004–7015.CrossRefGoogle Scholar
  58. 58.
    Wang, X., Chen, M., Han, Z., Wu, D. O., & Kwon, T. T. (2014). Toss: Traffic offloading by social network service-based opportunistic sharing in mobile social networks. In INFOCOM, 2014 proceedings IEEE (pp. 2346–2354). IEEEGoogle Scholar
  59. 59.
    Xiaofeng, L., Pan, H., & Lio, P. (2013). Offloading mobile data from cellular networks through peer-to-peer WiFi communication: A subscribe-and-send architecture. China Communications, 10(6), 35–46.CrossRefGoogle Scholar
  60. 60.
    Yavuz, M., Meshkati, F., Nanda, S., Pokhariyal, A., Johnson, N., Raghothaman, B., et al. (2009). Interference management and performance analysis of UMTS/HSPA+ femtocells. IEEE Communications Magazine, 47(9), 102–109.CrossRefGoogle Scholar
  61. 61.
    Zhang, Y., Gao, W., Cao, G., La Porta, T., Krishnamachari, B., & Iyengar, A. (2012). Social-aware data diffusion in delay tolerant manets. In M. T. Thai, & P. M. Pardalos (Eds.), Handbook of optimization in complex networks: Communication and social networks (pp. 457–481). Berlin: Springer.CrossRefGoogle Scholar
  62. 62.
    Zhao, N., Liu, X., Yu, F. R., Li, M., & Leung, V. C. (2016). Communications, caching, and computing oriented small cell networks with interference alignment. IEEE Communications Magazine, 54(9), 29–35.CrossRefGoogle Scholar
  63. 63.
    Zhao, N., Yu, F. R., & Leung, V. C. (2015). Opportunistic communications in interference alignment networks with wireless power transfer. IEEE Wireless Communications, 22(1), 88–95.CrossRefGoogle Scholar
  64. 64.
    Zhu, Z., Fan, Z., Cao, F., & Sun, Y. (2011). Data offloading method for interference and mobility management in femtocell systems. In 2011 7th international wireless communications and mobile computing conference (IWCMC) (pp. 2115–2120). IEEE.Google Scholar
  65. 65.
    Zhuo, X., Gao, W., Cao, G., & Dai, Y. (2011). Win-coupon: An incentive framework for 3G traffic offloading. In 2011 19th IEEE international conference on network protocols (pp. 206–215). IEEE.Google Scholar

Copyright information

© Springer Science+Business Media, LLC 2017

Authors and Affiliations

  1. 1.College of Information and Communication EngineeringHarbin Engineering UniversityHarbinChina
  2. 2.Electronic Engineering and Computer ScienceQueen Mary University of LondonLondonUK
  3. 3.Department of Computer and Information SciencesNorthumbria UniversityNewcastle Upon TyneUK

Personalised recommendations