Advertisement

Wireless Networks

, Volume 25, Issue 2, pp 545–558 | Cite as

Dynamic power and subcarrier allocation for downlink OFDMA systems under imperfect CSI

  • Fei Liu
  • Qinghai YangEmail author
  • Qingsu He
  • Daeyoung Park
  • Kyung Sup Kwak
Article

Abstract

In this paper, we investigate the joint power and subcarrier allocation for the downlink of orthogonal frequency division multiplexing access systems, with various practical considerations including imperfect estimation of channel state information, a stochastic packet arrival and a time-varying channel. To this end, we formulate the stochastic optimization problem to minimize the time-averaged power consumption, whilst keeping all queues at the base-station stable. The data transmission rate is defined as a function of the transmit power, the assigned subcarrier and the estimation error. With the aid of Lyapunov optimization method, the original problem is transformed into a series of mixed-integer programming problems, which are then solved via the dual decomposition technique. We determine analytical bounds for the time-averaged power consumption and queue length achieved by our proposed algorithm, which depend on the channel estimation error. Moreover, the theoretical analysis and simulation results show that the proposed algorithm reduces the energy consumption at the expense of queue backlog (i.e., achieves a energy-queue tradeoff), and quantitatively strike the energy-queue tradeoff by simply tuning an introduced control parameter V.

Keywords

Imperfect CSI Channel estimation Queue stability Dynamic power and subcarrier allocation 

Notes

Acknowledgements

This research was supported in part by NSF China (61471287), 111 Project (B08038) and MSIT, Korea, under ITRC Program (IITP-2017-2014-0-00729) supervised by IITP.

References

  1. 1.
    Gortzen, S., & Schmeink, A. (2012). Optimality of dual methods for discrete multiuser multicarrier resource allocation problems. IEEE Transactions on Wireless Communications, 11(10), 3810–3817.CrossRefGoogle Scholar
  2. 2.
    Lopez-Perez, D., Chu, X., Vasilakos, A. V., & Claussen, H. (2014). Power minimization based resource allocation for interference mitigation in OFDMA femtocell networks. IEEE Journal on Selected Areas in Communication, 32(2), 333–344.CrossRefGoogle Scholar
  3. 3.
    Chang, T., Feng, K., Lin, J., & Wang, L. (2013). Green resource allocation schemes for relay-enhanced MIMO-OFDM networks. IEEE Transactions on Vehicular Technology, 62(9), 4539–4554.CrossRefGoogle Scholar
  4. 4.
    Luo, S., Zhang, R., & Lim, T. J. (2014). Joint transmitter and receiver energy minimization in multiuser OFDM systems. IEEE Transactions on Communications, 62(10), 3504–3516.CrossRefGoogle Scholar
  5. 5.
    Pao, W., Chen, Y., & Tsai, M. (2014). An adaptive allocation scheme in multiuser OFDM systems with time-varying channels. IEEE Transactions on Wireless Communications, 13(2), 669–679.CrossRefGoogle Scholar
  6. 6.
    Kim, S., Lee, B. G., & Park, D. (2013). Radio resource allocation for energy consumption minimization in multi-homed wireless networks. In IEEE international conference on communications, pp. 5589–8894Google Scholar
  7. 7.
    Joung, J., Ho, C. K., Tan, P., & Sun, S. (2012). Energy minimization in OFDMA downlink systems: A sequential linear assignment algorithm for resource allocation. IEEE Wireless Communications Letters, 1(4), 300–303.CrossRefGoogle Scholar
  8. 8.
    Gursoy, M. C. (2009). On the capacity and energy efficiency of the training-base transmissions over fading channels. IEEE Transactions on Information Theroy, 55(10), 4543–4567.CrossRefzbMATHGoogle Scholar
  9. 9.
    Adireddy, S., Tong, L., & Viswanathan, H. (2002). Optimal placement of training for frequency-selective block-fading channels. IEEE Transactions on Information Theory, 48(8), 2338–2353.MathSciNetCrossRefzbMATHGoogle Scholar
  10. 10.
    Wong, I. C., & Evans, B. L. (2009). Optimal resource allocation in OFDMA downlink with imperfect channle knowledge. IEEE Transactions on Communications, 57(1), 232–241.CrossRefGoogle Scholar
  11. 11.
    Awad, M. K., Mahinthan, V., Mehrjoo, M., Shen, X., & Mark, J. W. (2010). A dual-decomposition-based resource allocation for OFDMA networks with imperfect CSI. IEEE Transactions on Vehicular Technology, 59(5), 2394–2403.CrossRefGoogle Scholar
  12. 12.
    Wang, J., Su, Q., Wang, J., Feng, M., Chen, M., Jiang, B., et al. (2014). Imperfect CSI-based joint resource allocaiton in multirelay OFDMA networks. IEEE Transactions on Vehicular Technology, 63(8), 3806–3817.CrossRefGoogle Scholar
  13. 13.
    Neely, M. J. (2006). Energy optimal control for time-varying wireless networks. IEEE Transactions on Information Theory, 52(7), 2915–2934.MathSciNetCrossRefzbMATHGoogle Scholar
  14. 14.
    Urgaonkar, R., & Neely, M. J. (2009). Opportunistic scheduling with reliability guarantees in cognitive radio networks. IEEE Transactions on Mobile Computing, 8(6), 766–777.CrossRefGoogle Scholar
  15. 15.
    Ju, H., Liang, B., Li, J., & Yang, X. (2013). Dynamic joint resource optimization for LET-advanced relay networks. IEEE Transactions on Wireless Communications, 12(11), 5668–5678.CrossRefGoogle Scholar
  16. 16.
    Sheng, M., Li, Y., Wang, X., Li, J., & Shi, Y. (2016). Energy-efficiency and delay tradeoff in device-to-device communications underlaying cellular networks. IEEE Journal on Selected Areas in Communications, 34(1), 92–106.CrossRefGoogle Scholar
  17. 17.
    Ahmed, H., Jagannathan, K., & Bhashyam, S. (2015). Queue-aware optimal resource allocation for the LET downlink with best M subband feedback. IEEE Transactions on Wireless Communications, 14(9), 4923–4933.CrossRefGoogle Scholar
  18. 18.
    Wu, Y., Louie, R. H. Y., & McKay, M. R. (2013). Analysis and design of wireless ad hoc networks with estimation errors. IEEE Transactions on Signal Communications, 61(6), 1447–1459.MathSciNetCrossRefzbMATHGoogle Scholar
  19. 19.
    Georgiadis, L., Neely, M. J., & Tassiulas, L. (2006). Resource allocation and cross-layer control in wireless networks. Foundations and Trends in Networking, 1(1), 1–144.CrossRefzbMATHGoogle Scholar
  20. 20.
    Neely, M. J. (2010). Stochastic network optimization with application to communication and queueing systems. San Rafael, CA: Morgan & Claypool.CrossRefzbMATHGoogle Scholar
  21. 21.
    Huang, J., Subramanian, V., Agrawal, R., & Berry, R. (2009). Downlink scheduling and resource allocation for OFDM systems. IEEE Transactions on Wireless Communicatons, 8(1), 288–296.CrossRefGoogle Scholar
  22. 22.
    Huang, J., Subramanian, V., Agrawal, R., & Berry, R. (2009). Joint scheduling and resource allocation in uplink OFDM systems for broadband wireless access networks. IEEE Journal on Selected Areas in Communications, 27(2), 226–234.CrossRefGoogle Scholar
  23. 23.
    Ju, H., Liang, B., Li, J., & Yang, X. (2013). Dynamic joint resource optimization for LTE-advanced relay networks. IEEE Transactions on Wireless Communications, 12(11), 5668–5678.CrossRefGoogle Scholar
  24. 24.
    Boyd, S., & vandenberghe, L. (2004). Convex optimization. Cambridge: Cambridge University Press.CrossRefzbMATHGoogle Scholar
  25. 25.
    Neely, M. J. (2013). Dynamic optimization and learning for renewal systems. IEEE Transactions on Automatic Control, 58(1), 32–46.MathSciNetCrossRefzbMATHGoogle Scholar
  26. 26.
    Bertsekas, D., & Gallager, R. (1987). Data networks. Upper Saddle River: Prentice-Hall.zbMATHGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2017

Authors and Affiliations

  • Fei Liu
    • 1
    • 2
  • Qinghai Yang
    • 1
    • 2
    Email author
  • Qingsu He
    • 3
  • Daeyoung Park
    • 4
  • Kyung Sup Kwak
    • 4
  1. 1.State Key Laboratory of ISN, School of Telecommunications EngineeringXidian UniversityXi’anChina
  2. 2.Collaborative Innovation Center of Information Sensing and UnderstandingXidian UniversityXi’anChina
  3. 3.State Grid Information and Telecommunication GroupBeijingChina
  4. 4.Department of Information and Communication EngineeringInha UniversityIncheonKorea

Personalised recommendations