Advertisement

Wireless Networks

, Volume 25, Issue 2, pp 521–531 | Cite as

MMSE-based-filter and artificial noise design for MIMO–OFDM systems

  • Ming LiEmail author
  • Wenfei Liu
  • Xiaowen Tian
  • Zihuan Wang
  • Qian Liu
Article
  • 141 Downloads

Abstract

Physical layer security is a crucial issue in wireless networks to prevent legitimate communication from eavesdropping. This paper investigates the physical layer security of a wireless multiple-input multiple-output (MIMO) orthogonal frequency division multiplexing (OFDM) communication system in the presence of a multiple-antenna eavesdropper. We first propose a minimum mean square error (MMSE)-based-filter secure MIMO–OFDM system which can destroy the orthogonality of eavesdropper’s signals. The MMSE-based-filter is used at the receiver to suppress the inter-subcarrier interference and disturb the reception of eavesdropper while maintaining the quality of legitimate transmission. Next, we propose another artificial noise (AN)-assisted secure MIMO–OFDM system to further improve the security of the legitimate transmission. The time-domain AN signal is designed to be canceled out at the legitimate receiver. Therefore, AN will disturb the reception of eavesdropper while the legitimate transmission will not be affected. Finally, power allocation for AN signals and subcarriers will be discussed since AN is generated utilizing the residual power of the MIMO–OFDM system. Simulation results are presented to demonstrate the security performance of the proposed transmit filter design and AN-assisted scheme in the MIMO–OFDM system.

Keywords

Physical layer security Transmit filter MIMO–OFDM Artificial noise Power allocation 

Notes

Acknowledgements

This paper is supported by the Natural Science Foundation of China (Grant No. 61671101 and 61601080), Natural Science Foundation of Liaoning Province (Grant No. 2015020043), and the Fundamental Research Funds for the Central Universities (Grant No. DUT 15RC(3)121).

References

  1. 1.
    Shiu, Y. S., Chang, S. Y., & Wu, H. C. (2011). Physical layer security in wireless networks: A tutorial. IEEE Wireless Communications, 18(2), 66–74.CrossRefGoogle Scholar
  2. 2.
    Mukherjee, A., Fakoorian, S. A. A., Huang, J., et al. (2014). Principles of physical layer security in multiuser wireless networks: A survey. IEEE Communications Surveys & Tutorials, 16(3), 1550–1573.CrossRefGoogle Scholar
  3. 3.
    Wyner, A. D. (1975). The wire-tap channel. Bell System Technical Journal, 54(8), 1355–1387.MathSciNetCrossRefzbMATHGoogle Scholar
  4. 4.
    Cheong, S. L. Y., & Hellman, M. (1978). The Gaussian wire-tap channel. IEEE Transactions on Information Theory, 24(4), 451–456.MathSciNetCrossRefzbMATHGoogle Scholar
  5. 5.
    Mei, W., Chen, Z., & Fang, J. (2016). Secrecy capacity region maximization in Gaussian MISO channels with integrated services. IEEE Signal Processing Letters, 23(8), 1146–1150.Google Scholar
  6. 6.
    Jeon, H., Kim, N., Choi, J., et al. (2010). Bounds on secrecy capacity over correlated ergodic fading channels at high SNR. IEEE Transactions on Information Theory, 57(4), 1975–1982.MathSciNetCrossRefzbMATHGoogle Scholar
  7. 7.
    Zhou, X., & McKay, M. R. (2010). Secure transmission with artificial noise over fading channels: Achievable rate and optimal power allocation. IEEE Transactions on Vehicular Technology, 59(8), 3831–3842.CrossRefGoogle Scholar
  8. 8.
    Salehkalaibar, S., & Aref, M. R. (2014). Physical layer security for some classes of three-receiver broadcast channels. IET Communications, 8(11), 1965–1976.CrossRefGoogle Scholar
  9. 9.
    Csiszar, I., & Korner, J. (1978). Broadcast channels with confidential messages. IEEE Transactions on Information Theory, 24(3), 339–348.MathSciNetCrossRefzbMATHGoogle Scholar
  10. 10.
    Hamid, U., Qamar, R. A., & Waqas, K. (2014). Performance comparison of time-domain and frequency-domain beamforming techniques for sensor array processing. In International Bhurban conference on applied science and technology.Google Scholar
  11. 11.
    Chen, Y., Hu, X., & Tan, Z. (2011). Power allocation for OFDM-DF cooperative communication. In 2011 Third international conference on communications and mobile computing.Google Scholar
  12. 12.
    Amankwa, E., Loock, M., Kritzinger, E. (2014). A conceptual analysis of information security education, information security training and information security awareness definitions. In 2014 9th international conference for internet technology and secured transactions (ICITST).Google Scholar
  13. 13.
    Wang, Z., Li, L., & Wang, H. (2016). Beamforming design in relay-based full-duplex MISO wireless powered communication networks. IEEE Communication Letters, 20(10), 2047–2050.CrossRefGoogle Scholar
  14. 14.
    Wang, H. M., Wang, C., & Ng, D. W. K. (2015). Artificial noise assisted secure transmission under training and feedback. IEEE Transactions on Signal Processing, 63(23), 6285–6298.MathSciNetCrossRefzbMATHGoogle Scholar
  15. 15.
    Lin, P. H., Lai, S. H., Lin, S. C., et al. (2013). On secrecy rate of the generalized artificial-noise assisted secure beamforming for wiretap channels. IEEE Journal on Selected Areas in Communications, 31(9), 1728–1740.CrossRefGoogle Scholar
  16. 16.
    Liao, W. C., Chang, T. H., Ma, W. K., et al. (2011). QoS-based transmit beamforming in the presence of eavesdroppers: An optimized artificial-noise-assisted approach. IEEE Transactions on Signal Processing, 59(3), 1202–1216.MathSciNetCrossRefzbMATHGoogle Scholar
  17. 17.
    Zhu, J., Schober, R., & Bhargava, V. K. (2016). Linear precoding of data and artificial noise in secure massive MIMO systems. IEEE Transactions on Wireless Communications, 15(3), 2245–2261.CrossRefGoogle Scholar
  18. 18.
    Zheng, T. X., & Wang, H. M. (2016). Optimal power allocation for artificial noise under imperfect CSI against spatially random eavesdroppers. IEEE Transactions on Vehicular Technology, 65(10), 8812–8817.CrossRefGoogle Scholar
  19. 19.
    Zheng, T. X., Wang, H. M., Yuan, J., et al. (2015). Multi-antenna transmission with artificial noise against randomly distributed eavesdroppers. IEEE Transactions on Communications, 63(11), 4347–4362.CrossRefGoogle Scholar
  20. 20.
    Wang, H. M., Wang, C., Zheng, T. X., et al. (2016). Impact of artificial noise on cellular networks: A stochastic geometry approach. IEEE Transactions on Wireless Communications, 15(11), 7390–7404.CrossRefGoogle Scholar
  21. 21.
    Wang, H. M., Wang, C., Ng, D. W. K., et al. (2016). Artificial noise assisted secure transmission for distributed antenna systems. IEEE Transactions on Signal Processing, 64(15), 4050–4064.MathSciNetCrossRefGoogle Scholar
  22. 22.
    Lin, W. J., & Yen, J. C. (2009). An integrating channel coding and cryptography design for OFDM based WLANs. In IEEE international symposium on consumer electronics.Google Scholar
  23. 23.
    Taha, H., Alsusa, E. (2015). A MIMO precoding based physical layer security technique for key exchange encryption. In Proceedings of IEEE vehicular technology conference.Google Scholar
  24. 24.
    Cao, P., Hu, X., & Wu, J. (2014). Physical layer encryption in OFDM-PON employing time-variable keys from ONUs. IEEE Photonics Journal, 6(2), 1–7.CrossRefGoogle Scholar
  25. 25.
    Qin, H., Sun, Y., Chang, T. H., et al. (2013). Power allocation and time-domain artificial noise design for wiretap OFDM with discrete inputs. IEEE Transactions on Wireless Communications, 12(6), 2717–2729.CrossRefGoogle Scholar
  26. 26.
    Chopra, R., Murthy, C. R., & Suraweera, H. A. (2016). On the throughput of large MIMO beamforming systems with channel aging. IEEE Transactions on Signal Processing Letters, 23(11), 1523–1527.CrossRefGoogle Scholar
  27. 27.
    Mukherjee, A., & Swindlehurst, A. L. (2011). Robust beamforming for secrecy in MIMO wiretap channels with imperfect CSI. IEEE Transactions on Signal Processing, 59(1), 351–361.MathSciNetCrossRefzbMATHGoogle Scholar
  28. 28.
    Wang, H. M., Yin, Q., & Xia, X. G. (2012). Distributed beamforming for physical-layer security of two-way relay networks. IEEE Transactions on Signal Processing, 60(7), 3532–3545.MathSciNetCrossRefzbMATHGoogle Scholar
  29. 29.
    Huang, X., Wu, J., & Wen, Y. (2016). Rate-adaptive feedback with Bayesian compressive sensing in multiuser MIMO beamforming systems. IEEE Transactions on Wireless Communications, 15(7), 4839–4851.Google Scholar
  30. 30.
    Shafie, A. E., Niyato, D., & Dhahir, N. A. (2016). Artificial-noise-aided secure MIMO full-duplex relay channels with fixed-power transmissions. IEEE Communications Letters, 20(8), 1591–1594.CrossRefGoogle Scholar
  31. 31.
    Wang, H. M., Luo, M., Xia, X. G., et al. (2013). Joint cooperative beamforming and jamming to secure AF relay systems with individual power constraint and no eavesdroppers CSI. IEEE Transactions on Wireless Communications, 20(1), 39–42.Google Scholar
  32. 32.
    Chisaguano, D. J. R., Hou, Y., & Higashino, T. (2016). Low-complexity channel estimation and detection for MIMO-OFDM receiver with ESPAR antenna. IEEE Transactions on Vehicular Technology, 65(10), 8297–8308.CrossRefGoogle Scholar
  33. 33.
    Wu, C. Y., Lan, P. C., Yeh, P. C., et al. (2013). Practical physical layer security schemes for MIMO-OFDM systems using precoding matrix indices. IEEE Journal on Selected Areas in Communications, 31(9), 1687–1700.CrossRefGoogle Scholar
  34. 34.
    Lee, D. (2016). MIMO OFDM channel estimation via block stagewise orthogonal matching pursuit. IEEE Communications Letters, 20(10), 2115–2118.CrossRefGoogle Scholar
  35. 35.
    Akitaya, T., Asano, S., & Saba, T. (2014). Time-domain artificial noise generation technique using time-domain and frequency-domain processing for physical layer security in MIMO–OFDM systems. In Proceedings of IEEE international conference on communication, workshops, Sydney, Australia (pp. 807–812).Google Scholar

Copyright information

© Springer Science+Business Media, LLC 2017

Authors and Affiliations

  • Ming Li
    • 1
    Email author
  • Wenfei Liu
    • 1
  • Xiaowen Tian
    • 1
  • Zihuan Wang
    • 1
  • Qian Liu
    • 2
  1. 1.School of Information and Communication EngineeringDalian University of TechnologyDalianChina
  2. 2.School of Computer Science and TechnologyDalian University of TechnologyDalianChina

Personalised recommendations