Advertisement

Wireless Networks

, Volume 25, Issue 1, pp 335–354 | Cite as

Could-based vehicular networks: a taxonomy, survey, and conceptual hybrid architecture

  • Mohammad Reza JabbarpourEmail author
  • Alireza Marefat
  • Ali Jalooli
  • Houman Zarrabi
Article

Abstract

In recent times, vehicular network research has attracted the attention of both researchers and the industry partly due to its potential applications in efficient traffic management, road safety, entertainment, etc. Resources such as communication, on-board unit, storage and computing units, and battery are generally installed in the vehicles participating in intelligent transportation systems. The need to maximize the utilization of these resources has also resulted in interest in cloud based vehicular networks (CVNs), an area of active research. This paper survey the CVNs literature published between 2010 and 2016. In addition, a taxonomy based on three main CVN categories, namely vehicular cloud computing (VCC), vehicle using cloud (VuC) and hybrid cloud (HC), is presented. In the taxonomy, we focus on related systems, architectures, applications and services. Although VCC has been extensively discussed in the literature, a comprehensive survey on the two other categories is lacking. Hence, this motivates our research. Through an extensive comparison of common characteristics among cloud computing, mobile cloud computing, VCC, VuC and HC and overview of the existing architectures, we present a conceptual HC architecture. Finally, we conclude the paper with open issues and challenges.

Keywords

Vehicular networks Intelligent transportation systems Cloud computing Vehicular cloud computing Mobile computing Road networks 

References

  1. 1.
    Ab Rahman, N. H., & Choo, K.-K. R. (2015). A survey of information security incident handling in the cloud. Computers & Security, 49, 45–69.Google Scholar
  2. 2.
    Ab Rahman, N. H., Glisson, W. B., Yang, Y., & Choo, K.-K. R. (2016). Forensic-by-design framework for cyber-physical cloud systems. IEEE Cloud Computing, 3(1), 50–59.Google Scholar
  3. 3.
    Abid, H., Phuong, L. T. T., Wang, J., Lee, S., Qaisar, S. (2011). V-cloud: Vehicular cyber-physical systems and cloud computing. In Proceedings of the 4th International Symposium on Applied Sciences in Biomedical and Communication Technologies (p. 165). ACM.Google Scholar
  4. 4.
    Ahmed, M., Sattari, M. R. J., Nasir, M. K., Ghahremani, S., Khorsandroo, S., Ali, S. A. S., et al. (2013). Vehicle adhoc sensor network framework to provide green communication for urban operation rescue. Lecture Notes on Information Theory, 1(2), 77–82.Google Scholar
  5. 5.
    Al Mamun, M. A., Anam, K., Onik, M. F. A., & Esfar-E-Alam, A. M. (2012). Deployment of cloud computing into vanet to create ad hoc cloud network architecture. In Proceedings of the world congress on engineering and computer science, Vol. 1, p. 5.Google Scholar
  6. 6.
    Al-Sultan, S., Al-Doori, M. M., Al-Bayatti, A. H., & Zedan, H. (2014). A comprehensive survey on vehicular ad hoc network. Journal of Network and Computer Applications, 37, 380–392.Google Scholar
  7. 7.
    Alam, S., Chowdhury, M. M. R., Noll, J. (2010). Senaas: An event-driven sensor virtualization approach for internet of things cloud. In 2010 IEEE international conference on networked embedded systems for enterprise applications (NESEA) (pp. 1–6). IEEE.Google Scholar
  8. 8.
    Alazawi, Z., Abdljabar, M. B., Altowaijri, S., Vegni, A. M., & Mehmood, R. (2012). Icdms: An intelligent cloud based disaster management system for vehicular networks. In Communication technologies for vehicles (pp. 40–56). Springer.Google Scholar
  9. 9.
    Alazawi, Z., Alani, O., Abdljabar, M. B., Altowaijri, S., & Mehmood, R. (2014). A smart disaster management system for future cities. In Proceedings of the 2014 ACM international workshop on wireless and mobile technologies for smart cities (pp. 1–10). ACM.Google Scholar
  10. 10.
    Alazawi, Z., Altowaijri, S., Mehmood, R., & Abdljabar, M. B. (2011). Intelligent disaster management system based on cloud-enabled vehicular networks. In 2011 11th international conference on ITS telecommunications (ITST) (pp. 361–368). IEEE.Google Scholar
  11. 11.
    Alexe, A., & Ezhilarasie, R. (2011). Cloud computing based vehicle tracking information systems. IJCST, 2(1), 49–52.Google Scholar
  12. 12.
    Alipour, B., Khanli, L. M., & Mahan, F. (2012). Kgic-its, a new system in intelligent transport system with corporation knowledge grid & cloud technology. In 2012 IEEE international conference on vehicular electronics and safety (ICVES) (pp. 296–301). IEEE.Google Scholar
  13. 13.
    Amazon Web Services. (2008). Amazon elastic compute cloud. https://aws.amazon.com/ec2/.
  14. 14.
    Arif, S., Olariu, S., Wang, J., Yan, G., Yang, W., & Khalil, I. (2012). Datacenter at the airport: Reasoning about time-dependent parking lot occupancy. IEEE Transactions on Parallel and Distributed Systems, 23(11), 2067–2080.Google Scholar
  15. 15.
    Armbrust, M., Fox, A., Griffith, R., Joseph, A. D., Katz, R., Konwinski, A., et al. (2010). A view of cloud computing. Communications of the ACM, 53(4), 50–58.Google Scholar
  16. 16.
    Baby, D., Sabareesh, R. D., Saravanaguru, R. A. K., Thangavelu, A. (2013). VCR: Vehicular cloud for road side scenarios. In Advances in computing and information technology (pp. 541–552). Springer.Google Scholar
  17. 17.
    Bali, R. S., & Kumar, N. (2016). Learning automata-assisted predictive clustering approach for vehicular cyber-physical system. Computers & Electrical Engineering, 52, 82–97.Google Scholar
  18. 18.
    Barham, P., Dragovic, B., Fraser, K., Hand, S., Harris, T., Ho, A., et al. (2003). Xen and the art of virtualization. ACM SIGOPS Operating Systems Review, 37(5), 164–177.Google Scholar
  19. 19.
    Bernstein, D., Vidovic, N., & Modi, S. (2010). A cloud paas for high scale, function, and velocity mobile applications-with reference application as the fully connected car. In 2010 fifth international conference on systems and networks communications (ICSNC) (pp. 117–123). IEEE.Google Scholar
  20. 20.
    Bitam, S., & Mellouk, A. (2012). Its-cloud: Cloud computing for intelligent transportation system. In 2012 IEEE global communications conference (GLOBECOM) (pp. 2054–2059). IEEE.Google Scholar
  21. 21.
    Bitam, S., Mellouk, A., & Zeadally, S. (2015). Vanet-cloud: A generic cloud computing model for vehicular ad hoc networks. IEEE Wireless Communications, 22(1), 96–102.Google Scholar
  22. 22.
    Brown, A., Johnston, S., & Kelly, K. (2002). Using service-oriented architecture and component-based development to build web service applications. Rational Software Corporation, 6, 1–16.Google Scholar
  23. 23.
    Celesti, A., Peditto, N., Verboso, F., Villari, M., & Puliafito, A. (2012). Draco paas: A distributed resilient adaptable cloud oriented platform. In 2013 IEEE 27th International Parallel and Distributed Processing Symposium Workshops & PhD Forum (IPDPSW) (pp. 1490–1497). IEEE.Google Scholar
  24. 24.
    Chang, X., Chen, B. Y., Li, Q., Cui, X., Tang, L., & Liu, C. (2013). Estimating real-time traffic carbon dioxide emissions based on intelligent transportation system technologies. IEEE Transactions on Intelligent Transportation Systems, 14(1), 469–479.Google Scholar
  25. 25.
    Cloud, R. (2016). Cloud sites the power of cloud computing & cloud hosting by rackspace. Retrieved on August 11.Google Scholar
  26. 26.
    Costa, P., Migliavacca, M., Pietzuch, P., & Wolf, A. L. (2012). Naas: Network-as-a-service in the cloud. In Proceedings of the 2nd USENIX conference on Hot Topics in Management of Internet, Cloud, and Enterprise Networks and Services, Hot-ICE, Vol. 12, p. 1.Google Scholar
  27. 27.
    Dan, A., Johnson, R., & Arsanjani, A. (2007). Information as a service: Modeling and realization. In International workshop on systems development in SOA environments, 2007. SDSOA’07: ICSE Workshops 2007 (pp. 2–2). IEEE.Google Scholar
  28. 28.
    Danquah, W. M., & Altilar, D. T. (2015). Vcloud: A security framework for vanet. In Mobile and wireless technology (Vol. 310, pp. 1–13). Springer.Google Scholar
  29. 29.
    Di, S., Robert, Y., Vivien, F., Kondo, D., Wang, C.-L., & Cappello, F. (2013). Optimization of cloud task processing with checkpoint-restart mechanism. In 2013 international conference for high performance computing, networking, storage and analysis (SC) (pp. 1–12). IEEE.Google Scholar
  30. 30.
    Dikaiakos, M. D., Katsaros, D., Mehra, P., Pallis, G., & Vakali, A. (2009). Cloud computing: Distributed internet computing for it and scientific research. IEEE Internet Computing, 13(5), 10–13.Google Scholar
  31. 31.
    Dimitrakopoulos, G., & Demestichas, P. (2010). Intelligent transportation systems. IEEE Vehicular Technology Magazine, 5(1), 77–84.Google Scholar
  32. 32.
    Dinh, H. T., Lee, C., Niyato, D., & Wang, P. (2013). A survey of mobile cloud computing: architecture, applications, and approaches. Wireless Communications and Mobile Computing, 13(18), 1587–1611.Google Scholar
  33. 33.
    Eltoweissy, M., Olariu, S., & Younis, M. (2010). Towards autonomous vehicular clouds. In Ad hoc networks (pp. 1–16). Springer.Google Scholar
  34. 34.
    Fernando, N., Loke, S. W., & Rahayu, W. (2013). Mobile cloud computing: A survey. Future Generation Computer Systems, 29(1), 84–106.Google Scholar
  35. 35.
    Flexiscale cloud comp and hosting. (2007).Google Scholar
  36. 36.
    Florin, R., Abolghasemi, S., Zadeh, A. G., & Olariu, S. (2017). Big data in the parking lot. In K.-C. Li, H. Jiang, & A. Y. Zomaya (Eds.), Big data management and processing, chapter 21 (p. 425450). Taylor & Francis Group, CRC Press.Google Scholar
  37. 37.
    Florin, R., Ghazizadeh, P., Zadeh, A. G., El-Tawab, S., & Olariu, S. (2017). Reasoning about job completion time in vehicular clouds. IEEE Transactions on Intelligent Transportation Systems, 18(7), 1762–1771.Google Scholar
  38. 38.
    Florin, R., Ghazizadeh, P., Zadeh, A. G., & Olariu, S. (2015). Enhancing dependability through redundancy in military vehicular clouds. In MILCOM 2015-2015 IEEE Military Communications Conference (pp. 1064–1069). IEEE.Google Scholar
  39. 39.
    Foster, I., Zhao, Y., Raicu, I., & Lu, S. (2008). Cloud computing and grid computing 360-degree compared. In Grid computing environments workshop, 2008. GCE’08 (pp. 1–10). IEEE.Google Scholar
  40. 40.
    Gani, A., Nayeem, G. M., Shiraz, M., Sookhak, M., Whaiduzzaman, M., & Khan, S. (2014). A review on interworking and mobility techniques for seamless connectivity in mobile cloud computing. Journal of Network and Computer Applications, 43, 84–102.Google Scholar
  41. 41.
    Georoceanu, R. (2014). Extending parking assistance for automative user interfaces. Master’s thesis, Institute for Visualization and Interactive Systems, University of Stuttgart.Google Scholar
  42. 42.
    Gerla, M. (2012). Vehicular cloud computing. In 2012 The 11th Annual Mediterranean Ad Hoc Networking Workshop (Med-Hoc-Net) (pp. 152–155). IEEE.Google Scholar
  43. 43.
    Ghazizadeh, P., Florin, R., Zadeh, A. G., & Olariu, S. (2016). Reasoning about mean time to failure in vehicular clouds. IEEE Transactions on Intelligent Transportation Systems, 17(3), 751–761.Google Scholar
  44. 44.
    Habiba, M., & Akhter, S. (2013). A cloud based natural disaster management system. In Grid and pervasive computing (pp. 152–161). Springer.Google Scholar
  45. 45.
    Hanson, M. A., Powell, H. C, Jr., Barth, A. T., Ringgenberg, K., Calhoun, B. H., et al. (2009). Body area sensor networks: Challenges and opportunities. Computer, 42(1), 58.Google Scholar
  46. 46.
    Hartenstein, H., & Laberteaux, K. P. (2008). A tutorial survey on vehicular ad hoc networks. IEEE Communications Magazine, 46(6), 164–171.Google Scholar
  47. 47.
    He, W., Yan, G., & Xu, L. (2014). Developing vehicular data cloud services in the iot environment. IEEE Transactions on Industrial Informatics, 10(2), 1587–1595.Google Scholar
  48. 48.
    Head, M. R., Sailer, A., Shaikh, H., & Viswanathan, M. (2009). Taking it management services to a cloud. In IEEE international conference on cloud computing, 2009. CLOUD’09 (pp. 175–182). IEEE.Google Scholar
  49. 49.
    SD Hosting. (2010). GoGrid cloud hosting. http://www.gogrid.com/.
  50. 50.
    Hsieh, J.-W., Shih-Hao, Y., Chen, Y.-S., & Wen-Fong, H. (2006). Automatic traffic surveillance system for vehicle tracking and classification. IEEE Transactions on Intelligent Transportation Systems, 7(2), 175–187.zbMATHGoogle Scholar
  51. 51.
    Hsu, C.-H., Ma, J., & Obaidat, M. S. (2014). Dynamic intelligence towards merging cloud and communication services. Information Systems Frontiers, 16(1), 1–5.Google Scholar
  52. 52.
    Hu, X., Wang, L., Sheng, Z., TalebiFard, P., Zhou, L., Liu, J., et al. (2014). Towards a service centric contextualized vehicular cloud. In Proceedings of the Fourth ACM International Symposium on Development and Analysis of Intelligent Vehicular Networks and Applications (pp. 73–80). ACM.Google Scholar
  53. 53.
    Hussain, R., Abbas, F., Son, J., Kim, D., Kim, S., & Oh, H. (2013). Vehicle witnesses as a service: Leveraging vehicles as witnesses on the road in vanet clouds. In 2013 IEEE 5th international conference on cloud computing technology and science (CloudCom) (Vol. 1, pp. 439–444). IEEE.Google Scholar
  54. 54.
    Hussain, R., Abbas, F., Son, J., & Oh, H. (2013). Tiaas: Secure cloud-assisted traffic information dissemination in vehicular ad hoc networks. In 2013 13th IEEE/ACM International Symposium on Cluster, Cloud and Grid Computing (CCGrid) (pp. 178–179). IEEE.Google Scholar
  55. 55.
    Hussain, R., Rezaeifar, Z., & Heekuck, O. (2015). A paradigm shift from vehicular ad hoc networks to vanet-based clouds. Wireless Personal Communications, 83(2), 1131–1158.Google Scholar
  56. 56.
    Iqbal, S., Kiah, M. L., Mat, D., Babak, H., Muzammil, K., Suleman, K., et al. (2016). On cloud security attacks: A taxonomy and intrusion detection and prevention as a service. Journal of Network and Computer Applications, 74, 98–120.Google Scholar
  57. 57.
    Iwai, A., & Aoyama, M. (2011). Automotive cloud service systems based on service-oriented architecture and its evaluation. In 2011 IEEE international conference on cloud computing (CLOUD) (pp. 638–645). IEEE.Google Scholar
  58. 58.
    Jabbarpour, M. R., Noor, R. M., Khokhar, R. H., & Ke, C.-H. (2014). Cross-layer congestion control model for urban vehicular environments. Journal of Network and Computer Applications, 44, 1–16.Google Scholar
  59. 59.
    Jelassi, S., Bouzid, A., & Youssef, H. (2015). QoE-driven video streaming system over cloud-based vanet. In Communication technologies for vehicles (pp. 84–93). Springer.Google Scholar
  60. 60.
    Jiang, D., & Delgrossi, L. (2008). IEEE 802.11 p: Towards an international standard for wireless access in vehicular environments. In Vehicular Technology Conference, 2008. VTC Spring 2008. IEEE (pp. 2036–2040). IEEE.Google Scholar
  61. 61.
    Juliadotter, N. V., & Choo, K.-K. R. (2015). Cloud attack and risk assessment taxonomy. IEEE Cloud Computing, 2(1), 14–20.Google Scholar
  62. 62.
    Karimi, S. N. (2013). Azureits: A new cloud computing intelligent transportation system. In Algorithms and architectures for parallel processing (pp. 468–478). Springer.Google Scholar
  63. 63.
    Khan, A. N., Kiah, M. L., Mat, K., Samee, U., & Madani, S. A. (2013). Towards secure mobile cloud computing: A survey. Future Generation Computer Systems, 29(5), 1278–1299.Google Scholar
  64. 64.
    Kivity, A., Kamay, Y., Laor, D., Lublin, U., & Liguori, A. (2007). KVM: The linux virtual machine monitor. Proceedings of the Linux Symposium, Vol. 1, pp. 225–230.Google Scholar
  65. 65.
    Kumar, N., Lee, J.-H., Chilamkurti, N., & Vinel, A. (2015). Energy-efficient multimedia data dissemination in vehicular clouds: Stochastic-reward-nets-based coalition game approach. IEEE Systems Journal, 99, 1–12.Google Scholar
  66. 66.
    Kumar, S., Gollakota, S., & Katabi, D. (2012). A cloud-assisted design for autonomous driving. In Proceedings of the first edition of the MCC workshop on mobile cloud computing (pp. 41–46). ACM.Google Scholar
  67. 67.
    Lee, T., Kim, H., Rhee, K.-H., & Shin, S. U. (2013). Design and implementation of e-discovery as a service based on cloud computing. Computer Science and Information Systems/ComSIS, 10(2), 703–724.Google Scholar
  68. 68.
    Leng, Y., & Zhao, L. (2011). Novel design of intelligent internet-of-vehicles management system based on cloud-computing and internet-of-things. In 2011 international conference on electronic and mechanical engineering and information technology (EMEIT) (Vol. 6, pp. 3190–3193). IEEE.Google Scholar
  69. 69.
    Li, Q., Zhang, T., & Yu, Y. (2011). Using cloud computing to process intensive floating car data for urban traffic surveillance. International Journal of Geographical Information Science, 25(8), 1303–1322.Google Scholar
  70. 70.
    Lin, Y-W., Shen, J-M., & Weng, H.-C. (2011). Gateway discovery in vanet cloud. In 2011 IEEE 13th international conference on high performance computing and communications (HPCC) (pp. 951–954). IEEE.Google Scholar
  71. 71.
    Lin, Y.-W., Shen, J.-M., & Weng, H. C. (2013). Cloud-supported seamless internet access in intelligent transportation systems. Wireless Personal Communications, 72(4), 2081–2106.Google Scholar
  72. 72.
    Lin, Y-W., Shen, J-M., Weng, H-J. (2011). Cloud-assisted gateway discovery for vehicular ad hoc networks. In 2011 5th international conference on new trends in information science and service science (NISS) (Vol. 2, pp. 237–240). IEEE.Google Scholar
  73. 73.
    Magalhães, D., Calheiros, R. N., Buyya, R., & Gomes, D. G. (2015). Workload modeling for resource usage analysis and simulation in cloud computing. Computers & Electrical Engineering, 47, 69–81.Google Scholar
  74. 74.
    Marefat, A., Aboki, R., Jalooli, A., Shaghaghi, E., Jabbarpour, M. R., & Noor, R. M. (2014). An adaptive overtaking maneuver assistant system using vanet. In 2014 IEEE Asia pacific conference on wireless and mobile (pp. 316–321). IEEE.Google Scholar
  75. 75.
    Mell, P., & Grance, T. (2009). The nist definition of cloud computing. National Institute of Standards and Technology, 53(6), 50.Google Scholar
  76. 76.
    Mirjazaee, N., & Moghim, N. (2015). An opportunistic routing based on symmetrical traffic distribution in vehicular networks. Computers & Electrical Engineering, 47, 1–12.Google Scholar
  77. 77.
    Mousannif, H., Khalil, I., & Moatassime, H. A. (2011). Cooperation as a service in vanets. Journal of UCS, 17(8), 1202–1218.Google Scholar
  78. 78.
    Mousannif, H., Khalil, I., & Olariu, S. (2011). Cooperation in static and mobile sensor-based platforms for situation, activity and goal awareness. In Proceedings of the 2011 international workshop on situation activity & goal awareness (pp. 5–14). ACM.Google Scholar
  79. 79.
    Mousannif, H., Khalil, I., & Olariu, S. (2012). Cooperation as a service in vanet: Implementation and simulation results. Mobile Information Systems, 8(2), 153–172.Google Scholar
  80. 80.
    Mower, C. S., Palmer, M. A., & Mayhew, S. C. (2013). Networking as a service: Delivering network services using remote appliances controlled via a hosted, multi-tenant management system, January 1 2013. US Patent 8,347,355.Google Scholar
  81. 81.
    Mukhtar, A., Xia, L., & Tang, T. B. (2015). Vehicle detection techniques for collision avoidance systems: A review. IEEE Transactions on Intelligent Transportation Systems, 16(5), 2318–2338.Google Scholar
  82. 82.
    Nurmi, D., Wolski, R., Grzegorczyk, C., Obertelli, G., Soman, S., Youseff, L., et al. (2009). The eucalyptus open-source cloud-computing system. In 9th IEEE/ACM International Symposium on Cluster Computing and the Grid, 2009. CCGRID’09 (pp. 124–131). IEEE.Google Scholar
  83. 83.
    Oglesby, R., & Herold, S. (2005). Vmware esx server. Advanced Tehnical Design Guide, 19–22.Google Scholar
  84. 84.
    Olariu, S., Weigle, M. C., Yan, G., & Wen, D. (2013). Security challenges in vehicular cloud computing. IEEE Transactions on Intelligent Transportation Systems, 14(1), 284–294.Google Scholar
  85. 85.
    Olariu, S., Hristov, T., & Yan, G. (2012). The next paradigm shift: From vehicular networks to vehicular clouds. In S. Basagni, M. Conti, S. Giordano, & I. Stojmenovic (Eds.), Mobile ad hoc networking: The cutting edge directions. New York: Wiley.Google Scholar
  86. 86.
    Olariu, S., Khalil, I., & Abuelela, M. (2011). Taking vanet to the clouds. International Journal of Pervasive Computing and Communications, 7(1), 7–21.Google Scholar
  87. 87.
    Olariu, S., & Weigle, M. C. (2009). Vehicular networks: From theory to practice. Boca Raton: CRC Press.Google Scholar
  88. 88.
    Osanaiye, O., Choo, K.-K. R., & Dlodlo, M. (2016). Distributed denial of service (DDoS) resilience in cloud. Journal of Network and Computer Applications, 67, 147–165.Google Scholar
  89. 89.
    Quick, D., & Choo, K.-K. R. (2016). Google drive: Forensic analysis of cloud storage data remnants. Journal of Network and Computer Applications, 40, 179–193.Google Scholar
  90. 90.
    Quick, D., Martini, B., & Choo, K.-K. R. (2013). Cloud Storage Forensics. Amsterdam: Syngress Publishing/Elsevier.Google Scholar
  91. 91.
    Quresh, M. A., Noor, R. M., Shamim, A., Shamshirband, S., & Choo, K.-K. R. (2016). A lightweight radio propagation model for vehicular communication in road tunnels. PLOS ONE, 11(3), e0152727.Google Scholar
  92. 92.
    Redkar, T., & Guidici, T. (2011). Windows Azure Platform (Vol. 1). Berlin: Springer.Google Scholar
  93. 93.
    Fraenkel, S., Haftor, D. M., & Pashkevich, N. (2016). Salesforce management factors for successful new product launch. Journal of Business Research, 69(11), 5053–5058.Google Scholar
  94. 94.
    Sattari, M. R., Jabbarpour, N., Rafidah, M., & Ghahremani, S. (2013). Dynamic congestion control algorithm for vehicular ad-hoc networks. International Journal of Software Engineering and Its Applications, 7(3), 95–108.Google Scholar
  95. 95.
    Sattari, M. R. J., Noor, R. M., & Keshavarz, H. (2012). A taxonomy for congestion control algorithms in vehicular ad hoc networks. In 2012 IEEE international conference on communication, networks and satellite (ComNetSat) (pp. 44–49). IEEE.Google Scholar
  96. 96.
    Shi, H., Bai, X., Ren, C., & Zhao, C. (2014). Development of internet of vehicle’s information system based on cloud. Journal of Software, 9(7), 1848–1853.Google Scholar
  97. 97.
    Son, J., Eun, H., Oh, H., Kim, S., & Hussain, R. (2012). Rethinking vehicular communications: merging vanet with cloud computing. In Proceedings of the 2012 IEEE 4th international conference on cloud computing technology and science (CloudCom) (pp. 606–609). IEEE Computer Society.Google Scholar
  98. 98.
    Sun, J., Zhang, C., & Fang, Y. (2007). An id-based framework achieving privacy and non-repudiation in vehicular ad hoc networks. In Military Communications Conference, 2007. MILCOM 2007. IEEE (pp. 1–7). IEEE.Google Scholar
  99. 99.
    Sur, C., Park, Y., & Rhee, K. H. (2016). An efficient and secure navigation protocol based on vehicular cloud. International Journal of Computer Mathematics, 93(2), 325–344.MathSciNetzbMATHGoogle Scholar
  100. 100.
    Taherkordi, A., & Eliassen, F. (2014). Towards independent in-cloud evolution of cyber-physical systems. In 2014 IEEE international conference on cyber-physical systems, networks, and applications (CPSNA) (pp. 19–24). IEEE.Google Scholar
  101. 101.
    TalebiFard, P., Nicanfar, H., Hu, X., & Leung, V. (2013). Semantic based networking of information in vehicular clouds based on dimensionality reduction. In Proceedings of the Third ACM International Symposium on Design and Analysis of Intelligent Vehicular Networks and Applications (pp. 69–76). ACM.Google Scholar
  102. 102.
    Tao, F., Zuo, Y., Da Li, X., & Zhang, L. (2014). IoT based intelligent perception and access of manufacturing resource towards cloud manufacturing. IEEE Transactions on Industrial Informatics, 10(2), 1547–1557.Google Scholar
  103. 103.
    Tekbiyik, N., & Uysal-Biyikoglu, E. (2011). Energy efficient wireless unicast routing alternatives for machine-to-machine networks. Journal of Network and Computer Applications, 34(5), 1587–1614.Google Scholar
  104. 104.
    Tian, B., Morris, B. T., Tang, M., Liu, Y., Yao, Y., Gou, C., et al. (2015). Hierarchical and networked vehicle surveillance in its: A survey. IEEE Transactions on Intelligent Transportation Systems, 16(2), 557–580.Google Scholar
  105. 105.
    Toor, Y., Muhlethaler, P., & Laouiti, A. (2008). Vehicle ad hoc networks: Applications and related technical issues. IEEE Communications Surveys & Tutorials, 10(3), 74–88.Google Scholar
  106. 106.
    Wan, J., Zhang, D., Sun, Y., Lin, K., Zou, C., & Cai, H. (2014). Vcmia: A novel architecture for integrating vehicular cyber-physical systems and mobile cloud computing. Mobile Networks and Applications, 19(2), 153–160.Google Scholar
  107. 107.
    Wan, J., Zhang, D., Zhao, S., Yang, L. T., & Lloret, J. (2014). Context-aware vehicular cyber-physical systems with cloud support: architecture, challenges, and solutions. IEEE Communications Magazine, 52(8), 106–113.Google Scholar
  108. 108.
    Wang, J., Cho, J., Lee, S., & Ma, T. (2011). Real time services for future cloud computing enabled vehicle networks. In 2011 international conference on wireless communications and signal processing (WCSP) (pp. 1–5). IEEE.Google Scholar
  109. 109.
    Wang, S., Liu, Z., Sun, Q., Zou, H., & Yang, F. (2014). Towards an accurate evaluation of quality of cloud service in service-oriented cloud computing. Journal of Intelligent Manufacturing, 25(2), 283–291.Google Scholar
  110. 110.
    Whaiduzzaman, M., Sookhak, M., Gani, A., & Buyya, R. (2014). A survey on vehicular cloud computing. Journal of Network and Computer Applications, 40, 325–344.Google Scholar
  111. 111.
    Wu, J., Ping, L., Ge, X., Wang, Y., & Fu, J. (2010). Cloud storage as the infrastructure of cloud computing. In 2010 international conference on intelligent computing and cognitive informatics (ICICCI) (pp. 380–383). IEEE.Google Scholar
  112. 112.
    Yan, G., Lin, J., Rawat, D. B., & Yang, W. (2011). A geographic location-based security mechanism for intelligent vehicular networks. In Intelligent computing and information science (pp. 693–698). Springer.Google Scholar
  113. 113.
    Yan, G., Wen, D., Olariu, S., & Weigle, M. C. (2013). Security challenges in vehicular cloud computing. IEEE Transactions on Intelligent Transportation Systems, 14(1), 284–294.Google Scholar
  114. 114.
    Yang, C., Yan, X., & Nebert, D. (2013). Redefining the possibility of digital earth and geosciences with spatial cloud computing. International Journal of Digital Earth, 6(4), 297–312.Google Scholar
  115. 115.
    Yang, Y., Liu, J. K., Liang, K., Choo, K.-K. R., & Zhou, J. (2015). Extended proxy-assisted approach: achieving revocable fine-grained encryption of cloud data. In European Symposium on Research in Computer Security (pp. 146–166). Springer.Google Scholar
  116. 116.
    Yang, Y., Zhu, H., Haibing, L., Weng, J., Zhang, Y., & Choo, K.-K. R. (2016). Cloud based data sharing with fine-grained proxy re-encryption. Pervasive and Mobile Computing, 28, 122–134.Google Scholar
  117. 117.
    Yousif, J. H., & Saini, D. K. (2013). Cloud computing and accident handling systems. International Jounral of Computer Applications, 63(19), 21–26.Google Scholar
  118. 118.
    Yu, R., Zhang, Y., Gjessing, S., Xia, W., & Yang, K. (2013). Toward cloud-based vehicular networks with efficient resource management. IEEE Network, 27(5), 48–55.Google Scholar
  119. 119.
    Yu, R., Zhang, Y., Wu, H., Chatzimisios, P., Xie, S. (2013). Virtual machine live migration for pervasive services in cloud-assisted vehicular networks. In 2013 8th international ICST conference on communications and networking in China (CHINACOM) (pp. 540–545). IEEE.Google Scholar
  120. 120.
    Zahariev, A. (2009). Google app engine. Helsinki University of Technology.Google Scholar
  121. 121.
    Zaslavsky, A., Perera, C., & Georgakopoulos, D. (2013). Sensing as a service and big data. Arxiv preprint arXiv:1301.0159.
  122. 122.
    Zencke, P., & Eichin, R. (2008). Sap business bydesign. Wirtschaftsinformatik, 50(1), 47–51.Google Scholar
  123. 123.
    Zhang, Q., Cheng, L., & Boutaba, R. (2010). Cloud computing: state-of-the-art and research challenges. Journal of Internet Services and Applications, 1(1), 7–18.Google Scholar
  124. 124.
    Zingirian, N., & Valenti, C. (2012). Sensor clouds for intelligent truck monitoring. In 2012 IEEE Intelligent Vehicles Symposium (IV) (pp. 999–1004). IEEE.Google Scholar

Copyright information

© Springer Science+Business Media, LLC 2017

Authors and Affiliations

  1. 1.Department of Computer EngineeringIslamic Azad University North Tehran BranchTehranIran
  2. 2.Faculty of Computer Science and Information TechnologyUniversity of MalayaKuala LumpurMalaysia
  3. 3.Department of Computer ScienceMichigan Technological UniversityHoughtonUSA
  4. 4.Iran Telecommunication Research Center (ITRC)TehranIran

Personalised recommendations