Advertisement

Wireless Networks

, Volume 25, Issue 1, pp 439–453 | Cite as

DTMR: delay-aware traffic admission, mode selection, and resource allocation for D2D communication

  • Sheng Huang
  • Jiandong LiEmail author
  • Jinjing Huang
Article
  • 113 Downloads

Abstract

In device-to-device (D2D) communication underlaying a cellular network, the resource control involves traffic admission, mode selection, orthogonal channel assignment, and power control. Traffic admission limits queueing delay, mode selection exploits the proximity gain, and resource allocation guarantees user performance. Jointly optimizing these factors is highly challenging due to the stochastic nature of the system and the coupled control actions. Many previous works only consider a subset of these factors. In this paper, we tackle the joint optimization problem for delay-aware D2D communication. In particular, considering both dynamic traffic arrival and time-varying channel fading, we aim to maximize the time-average sum-rate of the network subject to the time-average throughput guarantee of users and resource allocation constraints. Thus, through presenting a Lyapunov optimization framework, we design an optimal delay-aware traffic admission, mode selection, and resource allocation (DTMR) strategy with polynomial time complexity based on dual optimization and ellipsoid search. We also analytically derive lower bound of the time-average sum-rate achieved by the proposed DTMR strategy. Further, we develop a fast heuristic strategy by decoupling the binary constraints of mode selection and channel assignment. Finally, simulation results demonstrate the superiority of the DTMR strategy against alternative strategies.

Keywords

D2D communication Resource allocation Lyapunov drift Dual optimization 

Notes

Acknowledgements

This work has been supported by the Key Project of National Natural Science Foundation of China (Grant Nos. 91638202 and 61231008), the National Natural Science Foundation of China (Grant No. 61072068), and the 111 Project (Grant No. B08038).

References

  1. 1.
    Doppler, K., Rinne, M., Wijting, C., Ribeiro, C., & Hugl, K. (2009). Device-to-device communication as an underlay to LTE-advanced networks. IEEE Communications Magazine, 47(12), 42–49.CrossRefGoogle Scholar
  2. 2.
    Fodor, G., Dahlman, E., Mildh, G., Parkvall, S., Reider, N., Miklos, G., et al. (2012). Design aspects of network assisted device-to-device communications. IEEE Communications Magazine, 50(3), 170–177.CrossRefGoogle Scholar
  3. 3.
    Lei, L., Zhong, Z., Lin, C., & Shen, X. (2012). Operator controlled device-to-device communications in LTE-advanced networks. IEEE Wireless Communications, 19(3), 96–104.CrossRefGoogle Scholar
  4. 4.
    Feng, D., Lu, L., Yuan-Wu, Y., Li, G., Li, S., & Feng, G. (2014). Device-to-device communications in cellular networks. IEEE Communications Magazine, 52(4), 49–55.CrossRefGoogle Scholar
  5. 5.
    Tang, H., & Ding, Z. (2016). Mixed mode transmission and resource allocation for D2D communication. IEEE Transactions on Wireless Communications, 15(1), 162–175.CrossRefGoogle Scholar
  6. 6.
    Liu, Y. (2016). Optimal mode selection in D2D-enabled multibase station systems. IEEE Communications Letters, 20(3), 470–473.CrossRefGoogle Scholar
  7. 7.
    Chou, H. J., & Chang, R. Y. (2016). Interference-aware D2D mode selection in hybrid MIMO cellular networks. In Proceedings of IEEE ICC, (pp. 1–7). Kuala Lumpur, Malaysia.Google Scholar
  8. 8.
    Li, Y., Jin, D., Gao, F., & Zeng, L. (2014). Joint optimization for resource allocation and mode selection in device-to- device communication underlaying cellular networks. In Proceedings of IEEE ICC, (pp. 2245–2250). Sydney, Australia.Google Scholar
  9. 9.
    Wang, R., Zhang, J., Song, S. H., & Letaief, K. B. (2016). Qos-aware joint mode selection and channel assignment for D2D communications. In Proceedings of IEEE ICC, (pp. 1–6). Kuala Lumpur, Malaysia.Google Scholar
  10. 10.
    Li, Y., Gursoy, M. C., & Velipasalar, S. (2016). Joint mode selection and resource allocation for D2D communications under queueing constraints. In Proceedings of IEEE INFOCOM WKSHPS (pp. 490–495). San Francisco, CA, USA.Google Scholar
  11. 11.
    Apostolos, G., Konstantinos, K., Aikaterini, N., Foukalas, F., & Khattab, T. (2016). Energy efficient spectrum allocation and mode selection for mission-critical D2D communications. In Proceedings of IEEE INFOCOM WKSHPS, (pp. 435–440). San Francisco, CA, USA.Google Scholar
  12. 12.
    Nardini, G., Stea, G., Virdis, A., Sabella, D., & Caretti, M. (2017). Resource allocation for network-controlled device-to-device communications in LTE-advanced. Wireless Networks, 23, 787–804.CrossRefGoogle Scholar
  13. 13.
    Ma, R., Xia, N., Chen, H. H., Chiu, C. Y., & Yang, C. S. (2017). Mode selection, radio resource allocation, and power coordination in D2D communications. IEEE Wireless Communication, 24(3), 112–121.CrossRefGoogle Scholar
  14. 14.
    Hoang, T. D., Le, L. B., & Le-Ngoc, T. (2017). Joint mode selection and resource allocation for relay-based D2D communications. IEEE Communications Letters, 21(2), 398–401.CrossRefGoogle Scholar
  15. 15.
    Gao, C., Sheng, X., Tang, J., Zhang, W., Zou, S., & Guizani, M. (2014). Joint mode selection, channel allocation and power assignment for green device-to-device communications. In Proceedings of IEEE ICC, (pp. 178–183). Sydney, Australia.Google Scholar
  16. 16.
    Wen, S., Zhu, X., Zhang, X., & Yang, D. (2013). Qos-aware mode selection and resource allocation scheme for device-to-device (D2D) communication in cellular networks. In Proceedings of IEEE ICC, (pp. 101–105). Dudapest, Hungary.Google Scholar
  17. 17.
    Huang, Y., Nasir, A. A., Durrani, S., & Zhou, X. (2016). Mode selection, resource allocation, and power control for D2D-enabled two-tier cellular network. IEEE Transactions on Communications, 64(8), 3534–3547.CrossRefGoogle Scholar
  18. 18.
    Zhou, H., Ji, Y., Li, J., & Zhao, B. (2014). Joint mode selection, MCS assignment, resource allocation and power control for D2D communication underlaying cellular networks. In Proceedings of IEEE WCNC (pp. 1667–1672). Istanbul, Turkey.Google Scholar
  19. 19.
    Yu, G., Xu, L., Feng, D., Yin, R., Li, G. Y., & Jiang, Y. (2014). Joint mode selection and resource allocation for device-to-device communications. IEEE Transactions on Communications, 62(11), 3814–3824.CrossRefGoogle Scholar
  20. 20.
    Chen, X., Hu, R. Q., Jeon, J., & Wu, G. (2015). Optimal resource allocation and mode selection for D2D communication underlaying cellular networks. In Proceedings of IEEE Globecom (pp. 1–6). San Diego, CA, USA.Google Scholar
  21. 21.
    Wang, W., Zhang, F., & Lau, V. (2015). Dynamic power control for delay-aware device-to-device communications. IEEE Journal on Selected Areas in Communications, 33(1), 14–27.CrossRefGoogle Scholar
  22. 22.
    Lei, L., Kuang, Y., Cheng, N., Shen, X. S., Zhong, Z., & Lin, C. (2016). Delay-optimal dynamic mode selection and resource allocation in device-to-device communications—part I: Optimal policy. IEEE Transactions on Vehicular Technology, 65(5), 3474–3490.CrossRefGoogle Scholar
  23. 23.
    Lei, L., Kuang, Y., Cheng, N., Shen, X., Zhong, Z., & Lin, C. (2016). Delay-optimal dynamic mode selection and resource allocation in device-to-device communications—part II: Practical algorithm. IEEE Transactions on Vehicular Technology, 65(5), 3491–3505.CrossRefGoogle Scholar
  24. 24.
    Mi, X., Zhao, M., Xiao, L., Zhou, S., & Wang, J. (2015). Delay-aware resource allocation and power control for device-to-device communications. In Proceedings of IEEE WCNC Workshops (pp. 311–316). New Orleans, LA, USA.Google Scholar
  25. 25.
    Kim, D.-H., Oh, S.-J., & Lim, J. (2016). Multi-channel-based scheduling for overlay inband device-to-device communications. Wireless Networks. doi: 10.1007/s11276-016-1306-z.
  26. 26.
    Neely, M. J. (2010). Stochastic network optimization with application to communication and queueing systems. San Rafael, CA: Morgan & Claypool.CrossRefzbMATHGoogle Scholar
  27. 27.
    Sheng, M., Li, Y., Wang, X., Li, J., & Shi, Y. (2016). Energy efficiency and delay tradeoff in device-to-device communications underlaying cellular networks. IEEE Journal on Selected Areas in Communications, 34(1), 92–106.CrossRefGoogle Scholar
  28. 28.
    Cui, Y., Lau, V. K. N., Wang, R., Huang, H., & Zhang, S. (2012). A survey on delay-aware resource control for wireless systems—Large deviation theory, stochastic lyapunov drift, and distributed stochastic learning. IEEE Transactions on Information Theory, 58(3), 1677–1701.MathSciNetCrossRefzbMATHGoogle Scholar
  29. 29.
    Lu, H., Wang, Y., Chen, Y., & Ray Liu, K. J. (2016). Stable throughput region and admission control for device-to-device cellular coexisting networks. IEEE Transactions on Wireless Communications, 15(4), 2809–2824.CrossRefGoogle Scholar
  30. 30.
    Boyd, S., & Vandenberghe, L. (2004). Convex optimization. Cambridge: Cambridge University Press.CrossRefzbMATHGoogle Scholar
  31. 31.
    Yu, W., & Lui, R. (2006). Dual methods for nonconvex spectrum optimization of multicarrier systems. IEEE Transactions on Communications, 54(7), 1310–1322.CrossRefGoogle Scholar
  32. 32.
    3GPP TR 36.814 (2010). Further advancements for E-UTRA physical layer aspects. 3GPP, Technical Report.Google Scholar
  33. 33.
    Goldsmith, A. (2005). Wireless communications. Cambridge: Cambridge University Press.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2017

Authors and Affiliations

  1. 1.State Key Laboratory of Integrated Service NetworksXidian UniversityXi’anChina

Personalised recommendations