Advertisement

Wireless Networks

, Volume 25, Issue 1, pp 255–267 | Cite as

Efficient UE mobility in multi-RAT cellular networks using SDN

  • Dibakar DasEmail author
  • Debabrata Das
Article
  • 178 Downloads

Abstract

Though, Software Defined Networking (SDN) started with the wired networks, several architectural solutions have been proposed to incorporate SDN in the wireless domain, to improve the overall performance of the network. However, analyses of specific use cases or scenarios based on these architectural approaches have been largely unexplored. One of the architectural solutions proposed in the radio interface is to have a configurable data plane at the base station, e.g., OpenRadio, which can be programmed with different Radio Access Technologies (RATs) dynamically by the SDN controller. In this work, we further investigate the futuristic problem where schemes, like OpenRadio and SDN concepts, come into play to improve mobility of User Equipment (UE). It is a well-known fact that intra-RAT (e.g., LTE to LTE) mobility procedures have lower latency, and are far less complex than their inter-RAT (e.g., LTE to UMTS) counterparts. Hence, we can improve user experience by converting inter-RAT mobility procedures to intra-RAT counterparts. We already proposed this scenario in our previous work, and results showed substantial mobility improvements. However, this conversion requires SDN signaling to reconfigure the base station to the target RAT, followed by an intra-RAT mobility procedure for the UE. In this paper, we investigate the performance requirement of this combined SDN signaling and intra-RAT mobility procedures, in order to do better than the inter-RAT counterparts. Results using our analytical model show, a minimum of 20% reduction in time for combined SDN signaling and intra-RAT mobility can outperform existing inter-RAT mobility procedures. Simulation results validate the observations obtained from the analytical model. Comparison of results with OpenFlow scenario shows that achieving the required signaling performance is feasible.

Keywords

Software Defined Networking SDN Wireless Multi-RAT Multi-access Mobility Performance Signaling 

References

  1. 1.
    Open Networking Foundation (2012) Software-Defined Networking: The New Norm for Networks, White paper, April 13.Google Scholar
  2. 2.
    Open Networking Foundation (2009). OpenFlow Switch Specification, Version 1.0.0, www.openflow.org, December 31.
  3. 3.
    Nunes, B. A. A., Mendonca, M., Nguyen, X.-N., Obraczka, K., & Turletti, T. (2014). A survey of software-defined networking: Past, present, and future of programmable networks. IEEE Ccommunications Surveys & Tutorials, 16(3), 1617–1634.CrossRefGoogle Scholar
  4. 4.
    Kreutz, D., et. al. (2015). Software-defined networking: A comprehensive survey. In Proceedings of the IEEE.Google Scholar
  5. 5.
    Li, L. E., Mao, Z. M., & Rexford, J. (2012). Toward software-defined cellular networks. In Proceedings of the European Workshop on Software Defined Networking (EWSDN), pp. 7–12. doi: 10.1109/EWSDN.2012.28.
  6. 6.
    Bansal, M., Mehlman, J., Katti, S., & Levis, P. (2012). Openradio: A programmable wireless dataplane. In Proceedings of the First Workshop on Hot Topics in Software Defined Networks (HotSDN’12), pp. 109–114. New York, NY: ACM. doi: 10.1145/2342441.2342464.
  7. 7.
    Pentikousis, K., Wang, Y., & Hu, W. (2013). Mobileflow: Toward software defined mobile networks. IEEE Communications Magazine, 51(7), 44–53.CrossRefGoogle Scholar
  8. 8.
    Jagadeesan, N. A., & Krishnamachari, B. (2014). Software-defined networking paradigms in wireless networks: A survey. ACM Computing Survey. doi: 10.1145/2655690.Google Scholar
  9. 9.
    Osseiran, A., et al. (2014). Scenarios for 5G mobile and wireless communications: The Vision of the METIS project. IEEE Communications Magazine, 52, 26–35.CrossRefGoogle Scholar
  10. 10.
    Andrews, J. G., Buzzi, S., Choi, W., Hanly, S. V., Lozano, A., & Soong, A. C. K., et al. (2014). What will 5G be? IEEE Journal On Selected Areas In Communications, 32(6), 1065–1082. doi: 10.1109/JSAC.2014.2328098.CrossRefGoogle Scholar
  11. 11.
    Yap, P.-S., Sherwood, R., Kobayashi, M., Huang, T.-Y., Chan, M., & Handigol, N., et al. (2010). Blueprint for introducing innovation into wireless mobile networks. In Proceedings of the Second ACM SIGCOMM Workshop on Virtualized Infrastructure Systems and Architectures (VISA ’10) pp. 25–32. New York, NY: ACM. doi: 10.1145/1851399.1851404.
  12. 12.
    Arjona, A., & Yl-Jski, A. (2007). VoIP Call Signaling performance and always-on battery consumption in HSDPA, WCDMA and WiFi. International Conference on Wireless Communications, Networking and Mobile Computing, Google Scholar
  13. 13.
    Namakoye, J., & Van Olst, R. (2011). Performance evaluation of a voice call handover scheme between LTE and UMTS. In AFRICON.Google Scholar
  14. 14.
    Dimou, K. (2009). Handover within 3GPP LTE: Design principles and performance. In IEEE 70th Vehicular Technology Conference Fall (VTC 2009-Fall), pp. 1–5.Google Scholar
  15. 15.
    Das, D., & Das, D. (2016). Enhancement of mobility through reconfiguration of base-stations in multi-RAT cellular networks. In International Conference on Wireless Communications, Signal Processing and Networking.Google Scholar
  16. 16.
    Jungnickel, V., et al. (2014). The role of small cells, coordinated multipoint, and massive MIMO in 5G. IEEE Communications Magazine, 52, 44–51.CrossRefGoogle Scholar
  17. 17.
    Erlinghagen, K., et al. (2013). Dynamic cell size adaptation and intercell interference coordination in LTE HetNets. In Vehicular Technology Conference (VTC Fall), 2013 IEEE 78th Vehicular Technology Conference (VTC Fall).Google Scholar
  18. 18.
    Das, D., & Das, D. (2017). Radio access technology selection in SDN controlled reconfigurable base station. Computers and Electrical Engineering. doi: 10.1016/j.compeleceng.2017.04.008.
  19. 19.
    Costanzo, S., Galluccio, L., Morabito, G. & Palazzo, S. (2012). Software defined wireless networks: Unbridling SDNs. In Software Defined Networking (EWSDN), 2012 European Workshop on, pp. 16, IEEE.Google Scholar
  20. 20.
    Suresh, L., Schulz-Zander, J., Merz, R., Feldmann, A., & Vazao, T. (2012). Towards programmable enterprise WLANs with Odin. In Proceedings of the first workshop on Hot topics in software defined networks, pp. 115120, ACM.Google Scholar
  21. 21.
    Jin, X., Li, L.E., Vanbever, L., & Rexford, J. (2013). Softcell: Scalable and flexible cellular core network architecture. In ACM CoNEXT.Google Scholar
  22. 22.
    Gudipati, A., Perry, D., Li, L. E., & Katti, S. (2013). SoftRAN: Software Defined Radio Access NetworkGoogle Scholar
  23. 23.
    Bernardos, C. J., et al. (2014). An architecture for software defined wireless networking. IEEE Wireless Communications, 21(3), 52–61.CrossRefGoogle Scholar
  24. 24.
    Yap, K.-K., Kobayashi, M., Sherwood, R., Huang, T.-Y., Chan, M., & Handigol, N., et al. (2010). Openroads: Empowering research in mobile networks. SIGCOMM Computer Communication Review, 40(1), 125–126. doi: 10.1145/1672308.1672331.CrossRefGoogle Scholar
  25. 25.
    Ulversoy, T. (2010). Software defined radio: Challenges and opportunities. Communications Surveys & Tutorials, IEEE, 12(4), 531–550.CrossRefGoogle Scholar
  26. 26.
    Schulzrinne, H., & Wedlund, E. (2001). Application-layer mobility using SIP. Mobile Computing and Communications Review, 1(2).Google Scholar
  27. 27.
    Schulzrinne, H., & Wedlund, E. (1999). Mobility support using SIP. InIEEE ACM Multimedia conference WOWMOM.Google Scholar
  28. 28.
    Das, D., & Das, D. (2013). An analytical evaluation approach for control plane operations of a multi-RAT mobility procedures in a user equipment. Wireless Personal Communications, 69(4), 1309–1332.CrossRefGoogle Scholar
  29. 29.
    Hendrixen, T. F. M. (2009). UMTS and LTE/SAE handover solutions and their comparison. In 11th Twente Student Conference on IT. http://referaat.cs.utwente.nl/conference/11/paper/6984/umts-and-lte-sae-handover-solutions-and-theircomparison.pdf.
  30. 30.
    Wolfgang, K., et. al. (2007). Reconfigurable Base Station Processing and Resource Allocation. In 16th IST Mobile and Wireless Communications Summit.Google Scholar
  31. 31.
    ETSI, Reconfigurable Radio Systems (RRS);Functional Architecture (FA) for the Management and Control of Reconfigurable Radio Systems, ETSI TR 102 682, V1.1.1 (2009-07)Google Scholar
  32. 32.
    Bozkaya, E., & Canberk, B. (2015) QoE-based flow management in software defined vehicular networks. In IEEE Globecom Workshops (GC Wkshps).Google Scholar
  33. 33.
    Kafaie, S., Ahmed, M. H., & Chen, Y. (2016). Throughput analysis of network coding in multi-hop wireless mesh networks using queueing theory. In IEEE Global Communications Conference (GLOBECOM).Google Scholar
  34. 34.
    Wu, J., Zhang, Z., Hong, Y., & Wen, Y. (2015). Cloud radio access network (C-RAN): A primer. IEEE Network, 29(1), 35–41.CrossRefGoogle Scholar
  35. 35.
    Bolch, G., Greiner, S., de Meer, H., & Trivedi, K. S. (2006). Queueing networks and Markov chains: Modeling and performance evaluation with computer science applications (2nd ed.). Hoboken: Wiley.CrossRefzbMATHGoogle Scholar
  36. 36.
    Marzolla, M. (2010). The qnetworks Toolbox: A Software Package for Queueing Networks Analysis. In Al-Begain, K., Fiems D., and Knottenbelt, W. J. (Eds.), Proceedings 17th International Conference on Analytical and Stochastic Modeling Techniques and Applications (ASMTA 2010) Cardiff, UK, June 1416, volume 6148 of Lecture Notes in Computer Science, Springer, pp. 102116, ISBN 978-3-642-13567-5.Google Scholar
  37. 37.
  38. 38.
    Rotsos, C., Sarrar, N., Uhlig, S., Sherwood, R., & Moore, A. W. (2012). OFLOPS: An Open Framework for OpenFlow Switch Evaluation. In Taft N., Ricciato F. (Eds.), Passive and Active Measurement, PAM. Lecture Notes in Computer Science, Vol. 7192. Springer, Berlin.Google Scholar

Copyright information

© Springer Science+Business Media, LLC 2017

Authors and Affiliations

  1. 1.International Institute of Information TechnologyBangaloreIndia

Personalised recommendations