Wireless Networks

, Volume 25, Issue 1, pp 229–239 | Cite as

Load balancing routing with queue overflow prediction for WSNs

  • Hamadoun TallEmail author
  • Gérard Chalhoub
  • Nadir Hakem
  • Michel Misson


The ease of deployment of Wireless Sensor Networks (WSNs) makes them very popular and useful for data collection applications. Nodes often use multihop communication to transmit data to a collector node. The next hop selection in order to reach the final destination is done following a routing policy based on a routing metric. The routing metric value is exchanged via control messages. Control messages transmission frequency can reduce the network bandwidth and affect data transmission. Some approaches like trickle algorithm have been proposed to optimize the network control messages transmission. In this paper, we propose a collaborative load balancing algorithm (CoLBA) with a prediction approach to reduce network overhead. CoLBA is a queuing delay based routing protocol that avoids packet queue overflow and uses a prediction approach to optimize control messages transmission. Simulation results on Cooja simulator show that CoLBA outperforms other existing protocols in terms of delivery ratio and queue overflow while maintaining a similar end-to-end delay.


Wireless Sensor Networks Routing protocol Congestion Load balancing Prediction Overhead 



This research was conducted with the support of the European Regional Development Fund (FEDER) program of 2014–2020, the region council of Auvergne, and the Digital Trust Chair of the University of Auvergne.


  1. 1.
    Tall, H., Chalhoub, G., & Misson, M. (2015). CoLBA: A collaborative load balancing algorithm to avoid queue overflow in WSNs. In IEEE DSDIS (pp. 682–687).Google Scholar
  2. 2.
    Song, M., Zhao, Y., Wang, J., & Park, E. K. (2009). A high throughput load balance algorithm for multichannel wireless sensor networks. In IEEE ICC (pp. 1–5).Google Scholar
  3. 3.
    Ren, F., He, T., Das, S., & Lin, C. (2011). Traffic-aware dynamic routing to alleviate congestion in wireless sensor networks. IEEE TPDS, 22, 1585–1599.Google Scholar
  4. 4.
    Palani, U., Alamelumangai, V., & Nachiappan, A. (2015). Hybrid routing and load balancing protocol for wireless sensor network. Wireless Networks, 22(8), 1–8.Google Scholar
  5. 5.
    Periyanayagi, S., & Sumathy, V. (2014). S-ARMA model for network traffic prediction in wireless sensor networks. Journal of Theoretical and Applied Information Technology, 60(3), 524–530.Google Scholar
  6. 6.
    Winter, T., Thubert, P., Brandt, A., Clausen, T., Hui, J., Kelsey, R., et al. (2011). RPL: IPv6 routing protocol for low power and Lossy networks. ROLL working group.Google Scholar
  7. 7.
    Levis, P., Patel, N., Culler, D., & Shenker, S. (2004). Trickle: A self-regulating algorithm for code maintenance and propagation in wireless sensor networks. In USENIX NSDI (pp. 15–28).Google Scholar
  8. 8.
    Kandris, D., Vergados, D. J., Vergados, D. D., & Tzes, A. (2010). A routing scheme for congestion avoidance in wireless sensor networks. In IEEE CASE.Google Scholar
  9. 9.
    Xie, M., & Gu, Y. (2010). Multipath routing algorithm for wireless multimedia sensor networks within expected network lifetime. In IEEE CMC (pp. 284–287).Google Scholar
  10. 10.
    Li, H., Cheng, Y., Zhou, C., & Zhuang, W. (2009). Minimizing end-to-end delay: A novel routing metric for multi-radio wireless mesh networks. In IEEE INFOCOM (pp. 46–54).Google Scholar
  11. 11.
    Wan, C., Eisenman, S., & Campbell, A. (2003). CODA: Congestion detection and avoidance in sensor networks. In ACM SenSys (pp. 266–279).Google Scholar
  12. 12.
    Sergiou, C., & Vassiliou, V. (2011). DAlPaS: A performance aware congestion control algorithm in Wireless Sensor Networks. In IEEE ICT (pp. 167–173).Google Scholar
  13. 13.
    Banimelhem, O., & Khasawneh, S. (2012). GMCAR: Grid-based multipath with congestion avoidance routing protocol in wireless sensor networks. Ad Hoc Networks, 10(7), 1346–1361.CrossRefGoogle Scholar
  14. 14.
    Fang, W. W., Chen, J. M., Shu, L., Chu, T. S., & Qian, D. P. (2010). Congestion avoidance, detection and alleviation in wireless sensor networks. Journal of Zhejiang University Science C, 11(1), 63–73.CrossRefGoogle Scholar
  15. 15.
    De Couto, D. S., Aguayo, D., Bicket, J., & Morris, R. (2005). A high-throughput path metric for multi-hop wireless routing. Wireless Networks, 11(4), 419–434.CrossRefGoogle Scholar
  16. 16.
    Qiu, T., Feng, L., Xia, F., Wu, G., & Zhou, Y. (2011). A packet buffer evaluation method exploiting queueing theory for wireless sensor networks. Computer Science and Information Systems, 8(4), 1028–1049.CrossRefGoogle Scholar
  17. 17.
    Patel, B. V., & Bisdikian, C. C. (1996). End-station performance under leaky bucket traffic shaping. IEEE Network, 10(5), 40–47.CrossRefGoogle Scholar
  18. 18.
    Osterlind, F., Dunkels, A., Eriksson, J., Finne, N., & Voigt, T. (2006). Cross-level sensor network simulation with cooja. In IEEE LCN (pp. 641–648).Google Scholar
  19. 19.
    Dunkels, A., Gronvall, B., & Voigt, T. (2004). Contiki-a lightweight and flexible operating system for tiny networked sensors. In IEEE LCN (pp. 455–462).Google Scholar
  20. 20.
    Tall, H., Chalhoub, G., & Misson, M. (2016). Implementation and performance evaluation of IEEE 802.15. 4 unslotted CSMA/CA protocol on Contiki OS. Annals of Telecommunications, 71(9–10), 517–526.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2017

Authors and Affiliations

  1. 1.LIMOS UMR 6158 CNRSUniversity of Clermont AuvergneAubièreFrance
  2. 2.Laboratoire de Recherche Télébec en Communications Souterraines (LRTCS)Université du Québec en Abitibi-Témiscamingue (UQAT)Val-dOrCanada

Personalised recommendations