Abstract
In recent years Terahertz (THz) Band communications have gained even greater interest and higher expectations to meet an ever increasing demand for the speed of wireless communications. This paper provides the characteristics of electromagnetic waves propagating in the THz Band, which is one of the key technology to satisfy the increasing demand for Terahertz Wireless Data Communication (ThWDC). The performance of future terabit super channels implemented using bipolar phase-shift-keying which gives the best BER (Bit Error Rate) with today’s technology is investigated through the simulations for ThWDC. The objective of this paper is to describe the important issues related to the transmission in of ThWDC in air environment and to determine the best transmission windows in the THz range. In particular, ThWDC channel is modeled considering effects like capacity, channel performance and BER is investigated through simulation. The simulation results and the theoretical analysis show that data communication is possible from 0.01 to 0.5 THz frequency range and the best transmission window in this range have been found ω1 = [0.01–0.05 THz], ω2 = [0.06–0.16 THz] and ω3 = [0.2–0.3 THz] in this paper.
Keywords
Terahertz Wireless communications Ultrahigh-bitrate Electromagnetic absorbance Bit error rateReferences
- 1.Lee, T. H. (2003). The design of CMOS radio-frequency integrated circuits. Cambridge: Cambridge University Press.CrossRefGoogle Scholar
- 2.Christie, Y. (2004). Edholm’s law of bandwidth. IEEE Spectrum, 41, 58–60.Google Scholar
- 3.Nagatsuma, T. (2015). Photonics-enabled terahertz communications towards terabit/s. In Microwave photonics (MWP), 2015 international topical meeting on. IEEE, 2015. Google Scholar
- 4.Akyildiz, I. F., Jornet, J. M., & Han, C. (2014). Terahertz band: next frontier for wireless communicationsPhysical. Communication, 12, 16–32.Google Scholar
- 5.Index, Cisco Visual Networking. (2014). Forecast and methodology, 2012–2017 (2013). URL: http://www.cisco.com/en/US/solutions/collateral/ns341/ns525/ns537/ns705/ns827/white_paper_c11-481360.pdf.
- 6.Schneider, Thomas. (2015). Ultrahigh-bitrate wireless data communications via THz-links; possibilities and challenges. Journal of Infrared, Millimeter, and Terahertz Waves, 36(2), 159–179.CrossRefGoogle Scholar
- 7.Piesiewicz, R., et al. (2007). Short-range ultra-broadband terahertz communications: Concepts and perspectives. Antennas and Propagation Magazine, IEEE, 49(6), 24–39.CrossRefGoogle Scholar
- 8.Song, H.-J., & Nagatsuma, T. (2011). Present and future of terahertz communications. IEEE Transactions on Terahertz Science and Technology, 1(1), 256–263.CrossRefGoogle Scholar
- 9.Badoi, C.-I., et al. (2011). 5G based on cognitive radio. Wireless Personal Communications, 57(3), 441–464.CrossRefGoogle Scholar
- 10.Akyildiz, I. F., et al. (2014). LTE-advanced and the evolution to Beyond 4G (B4G) systems. Physical Communication, 10, 31–60.CrossRefGoogle Scholar
- 11.Rappaport, T. S., Murdock, J. N., & Gutierrez, F. (2011). ‘State of the art in 60-GHz integrated circuits and systems for wireless communications’. Proceedings of the IEEE, 99(8), 1390–1436.CrossRefGoogle Scholar
- 12.Vaughan-Nichols, S. J. (2010). ‘Gigabit Wi-Fi is on its way’. IEEE Computer, 43(11), 11–14.CrossRefGoogle Scholar
- 13.Baykas, T., et al. (2011). IEEE 802.15. 3c: The first IEEE wireless standard for data rates over 1 Gb/s. Communications Magazine, IEEE, 49(7), 114–121.CrossRefGoogle Scholar
- 14.Rangan, S., Rappaport, T. S., & Erkip, E. (2014). Millimeter-wave cellular wireless networks: Potentials and challenges. Proceedings of the IEEE, 102(3), 366–385.CrossRefGoogle Scholar
- 15.Wu, K., Xiao, J., & Ni, L. M. (2012). Rethinking the architecture design of data center networks. Frontiers Computer Science, 6(5), 596–603.MathSciNetGoogle Scholar
- 16.Katayama, Y., Takano, K., Kohda, Y., Ohba, N., & Nakano, D. (2011) Wireless data center networking with steered-beam mm-wave links. In IEEE wireless communications and networking conference, WCNC, 2011 (pp. 2179–2184).Google Scholar
- 17.Laskar, J., et al. (2007). The next wireless wave is a millimeter wave. Microwave Journal, 50(8), 22.Google Scholar
- 18.Llatser, I., et al. (2015). Scalability of the channel capacity in graphene-enabled wireless communications to the nanoscale. IEEE Transactions on Communications, 63(1), 324–333.Google Scholar
- 19.Schneider, T., et al. (2012). Link budget analysis for terahertz fixed wireless links. IEEE Transactions on Terahertz Science and Technology, 2(2), 250–256.CrossRefGoogle Scholar
- 20.Yang, Y., Mahboubeh, M., & Grischkowsky, D. (2015). THz-TDS characterization of the digital communication channels of the atmosphere and the enabled applications. Journal of Infrared, Millimeter, and Terahertz Waves, 36(2), 97–129.CrossRefGoogle Scholar
- 21.Carena, A., et al. (2010). Maximum reach versus transmission capacity for Terabit superchannels based on 27.75-GBaud PM-QPSK, PM-8QAM, or PM-16QAM. IEEE Photonics Technology Letters, 22(11), 829–831.CrossRefGoogle Scholar
- 22.Yu, J., et al. (2012). 7-Tb/s signal transmission Over 320 km using PDM-64QAM modulation. IEEE Photonics Technology Letters, 24(4), 264–266.CrossRefGoogle Scholar
- 23.Bosco, G., et al. (2011). On the performance of Nyquist-WDM terabit superchannels based on PM-BPSK, PM-QPSK, PM-8QAM or PM-16QAM subcarriers. Journal of Lightwave Technology, 29(1), 53–61.CrossRefGoogle Scholar
- 24.Friis, H. T. (1946). A note on a simple transmission formula. Proceedings of the IRE, 34(5), 254–256.CrossRefGoogle Scholar
- 25.Rappaport, T. S. (1996). Wireless communications: principles and practice (Vol. 2). New Jersey: Prentice Hall PTR.zbMATHGoogle Scholar
- 26.Couch, I. I., & Leon, W. (1994). Modern communication systems: Principles and applications. Upper Saddle River: Prentice Hall PTR.zbMATHGoogle Scholar
- 27.Goody, R. M., & Yung, Y. L. (1989). Atmospheric radiation: theoretical basis. In R. M. Goody & Y. L. Yung (Eds.), Atmospheric radiation: theoretical basis (2nd ed., p. 1). New York: Oxford University Press.Google Scholar
- 28.Rothman, L. S., et al. (2009). The HITRAN 2008 molecular spectroscopic database. Journal of Quantitative Spectroscopy & Radiative Transfer, 110(9), 533–572.CrossRefGoogle Scholar
- 29.The beer-lambert law. (1962). Journal of Chemical Education, 39(7), 333.CrossRefGoogle Scholar
- 30.Gueymard, C. A. (2008). REST2: High-performance solar radiation model for cloudless-sky irradiance, illuminance, and photosynthetically active radiation–Validation with a benchmark dataset. Solar Energy, 82(3), 272–285.CrossRefGoogle Scholar
- 31.Jornet, J. M., & Akyildiz, I. F. (2011). Channel modeling and capacity analysis for electromagnetic wireless nanonetworks in the terahertz band. IEEE Transactions on Wireless Communications, 10(10), 3211–3221.CrossRefGoogle Scholar
- 32.Akyildiz, I. F., Sun, Z., & Vuran, M. C. (2009). Signal propagation techniques for wireless underground communication networks. Physical Communication, 2(3), 167–183.CrossRefGoogle Scholar
- 33.Goldsmith, A. (2005). Wireless communications. Cambridge: Cambridge University Press.CrossRefGoogle Scholar
- 34.Vuran, M. C., & Akyildiz, I. F. (2010). Channel model and analysis for wireless underground sensor networks in soil medium. Physical Communication, 3(4), 245–254.CrossRefGoogle Scholar
- 35.Akkaş, M. A., & Sokullu, R. (2015). Channel modeling and analysis for wireless underground sensor networks in water medium using electromagnetic waves in the 300–700 MHz range. Wireless Personal Communications, 84(2), 1449–1468.CrossRefGoogle Scholar
- 36.Li, L., Vuran, M. C., & Akyildiz, I. F. (2007). Characteristics of underground channel for wireless underground sensor networks. In Proceedings Med-Hoc-Net’07.Google Scholar
- 37.
- 38.Kukutsu, N., & Kado, Y. (2009). Overview of millimeter and terahertz wave application research. NTT Technical Review, 7(3), 6.Google Scholar