Advertisement

Wireless Networks

, Volume 25, Issue 1, pp 131–143 | Cite as

Fast matching pursuit for wideband spectrum sensing in cognitive radio networks

  • Michael M. Abdel-Sayed
  • Ahmed KhattabEmail author
  • Mohamed F. Abu-Elyazeed
Article
  • 329 Downloads

Abstract

Wideband spectrum sensing is one of the most challenging components of cognitive radio networks. It should be performed as fast and accurately as possible. Traditional wideband spectrum sensing techniques suffer from the requirement of analog-to-digital converters with very high sampling rates. Compressed sensing has been recently considered as a technique that may enable wideband spectrum sensing at a much lower sampling rate than that dictated by the Nyquist theorem. However, the complexity and speed of existing compressed sensing reconstruction techniques remained a barrier for such an application. In this paper, we introduce fast matching pursuit (FMP), a fast and accurate greedy recovery algorithm for compressed sensing. We show that the spectral data are sparse in the Haar wavelet and wavelet packet domains. We apply FMP to wideband spectrum sensing for cognitive radio networks. Our proposed algorithm is capable of reconstructing spectrum signals from samples at a rate of about 25% of the Nyquist rate, significantly faster than other related algorithms, at more than 99% probability of detection and less than 1% probability of false alarm.

Keywords

Cognitive radio networks Spectrum sensing Compressed sensing Matching pursuit 

References

  1. 1.
    Proakis, J., & Salehi, M. (2007). Digital communications. New York: McGraw-Hill Education.Google Scholar
  2. 2.
    Sun, H., Laurenson, D. I., & Wang, C. X. (2010). Computationally tractable model of energy detection performance over slow fading channels. IEEE Communications Letters, 14(10), 924–926.CrossRefGoogle Scholar
  3. 3.
    Dandawaté, A. V., & Giannakis, G. B. (1994). Statistical tests for presence of cyclostationarity. IEEE Transactions on Signal Processing, 42(9), 2355–2369.CrossRefGoogle Scholar
  4. 4.
    Quan, Z., Cui, S., Sayed, A. H., & Poor, H. V. (2009). Optimal multiband joint detection for spectrum sensing in cognitive radio networks. IEEE Transactions on Signal Processing, 57(3), 1128–1140.MathSciNetCrossRefzbMATHGoogle Scholar
  5. 5.
    Farhang-Boroujeny, B. (2008). Filter bank spectrum sensing for cognitive radios. IEEE Transactions on Signal Processing, 56(5), 1801–1811.MathSciNetCrossRefzbMATHGoogle Scholar
  6. 6.
    Xin, Y., & Zhang, H. (2009). A simple sequential spectrum sensing scheme for cognitive radio. arXiv preprint arXiv:0905.4684.
  7. 7.
    Donoho, D. L. (2006). Compressed sensing. IEEE Transactions on Information Theory, 52(4), 1289–1306.MathSciNetCrossRefzbMATHGoogle Scholar
  8. 8.
    Eldar, Y. C., & Kutyniok, G. (2012). Compressed sensing: Theory and applications. Cambridge: Cambridge University Press.CrossRefGoogle Scholar
  9. 9.
    Boche, H., Calderbank, R., Kutyniok, G., & Vybíral, J. (2015). Compressed sensing and its applications. Berlin: Springer.CrossRefzbMATHGoogle Scholar
  10. 10.
    Tropp, J., & Gilbert, A. C. (2007). Signal recovery from partial information via orthogonal matching pursuit. IEEE Transactions on Information Theory, 53(12), 4655–4666.MathSciNetCrossRefzbMATHGoogle Scholar
  11. 11.
    Needell, D., & Tropp, J. A. (2010). COSAMP: Iterative signal recovery from incomplete and inaccurate samples. Communications of the ACM, 53(12), 93–100.CrossRefzbMATHGoogle Scholar
  12. 12.
    Abdel-Sayed, M. M., Khattab, A., & Abu-Elyazeed, M. F. (2016). Adaptive reduced-set matching pursuit for compressed sensing recovery. In IEEE international conference on image processing (ICIP). Phoenix, AZ.Google Scholar
  13. 13.
    Abdel-Sayed, M. M., Khattab, A., & Abu-Elyazeed, M. F. (2016). RMP: Reduced-set matching pursuit approach for efficient compressed sensing signal reconstruction. Journal of Advanced Research, 7(6), 851–861.CrossRefGoogle Scholar
  14. 14.
    Khattab, A., Perkins, D., & Bayoumi, M. (2013). Cognitive radio networks: From theory to practice. Berlin: Springer.CrossRefzbMATHGoogle Scholar
  15. 15.
    Yucek, T., & Arslan, H. (2009). A survey of spectrum sensing algorithms for cognitive radio applications. IEEE Communications Surveys and Tutorials, 11(1), 116–130.CrossRefGoogle Scholar
  16. 16.
    Bhowmick, A., Chandra, A., Roy, S. D., & Kundu, S. (2015). Double threshold-based cooperative spectrum sensing for a cognitive radio network with improved energy detectors. IET Communications, 9(18), 2216–2226.CrossRefGoogle Scholar
  17. 17.
    Ariananda, D. D., & Leus, G. (2012). Cooperative compressive wideband power spectrum sensing. In IEEE Asilomar conference on signals, systems and computers (ASILOMAR) (pp. 303–307). Pacific Grove, CA.Google Scholar
  18. 18.
    Bazerque, J. A., & Giannakis, G. B. (2010). Distributed spectrum sensing for cognitive radio networks by exploiting sparsity. IEEE Transactions on Signal Processing, 58(3), 1847–1862.MathSciNetCrossRefzbMATHGoogle Scholar
  19. 19.
    López-Parrado, A., & Velasco-Medina, J. (2016). Cooperative wideband spectrum sensing based on sub-nyquist sparse fast Fourier transform. IEEE Transactions on Circuits and Systems II: Express Briefs, 63(1), 39–43.CrossRefGoogle Scholar
  20. 20.
    Reyes, H., Subramaniam, S., Kaabouch, N., & Hu, W. C. (2016). A spectrum sensing technique based on autocorrelation and euclidean distance and its comparison with energy detection for cognitive radio networks. Computers & Electrical Engineering, 52, 319–327.CrossRefGoogle Scholar
  21. 21.
    Wang, S., Zhou, Z. H., Ge, M., & Wang, C. (2012). Resource allocation for heterogeneous multiuser OFDM-based cognitive radio networks with imperfect spectrum sensing. In IEEE INFOCOM. Orlando, FL.Google Scholar
  22. 22.
    Wang, S., Zhou, Z. H., Ge, M., & Wang, C. (2013). Resource allocation for heterogeneous cognitive radio networks with imperfect spectrum sensing. IEEE Journal on Selected Areas in Communications, 31(3), 464–475.CrossRefGoogle Scholar
  23. 23.
    Khattab, A., Perkins, D., & Bayoumi, M. (2013). Design, implementation and characterization of practical distributed cognitive radio networks. IEEE Transactions on Communications, 61(10), 4139–4150.CrossRefGoogle Scholar
  24. 24.
    Tian, Z., & Giannakis, G. B. (2006). A wavelet approach to wideband spectrum sensing for cognitive radios. In 1st International conference on cognitive radio oriented wireless networks and communications (CROWNCOM) (pp. 1–5). Mykonos Island, Greece.Google Scholar
  25. 25.
    Sun, H., Nallanathan, A., Wang, C. X., & Chen, Y. (2013). Wideband spectrum sensing for cognitive radio networks: A survey. IEEE Wireless Communications, 20(2), 74–81.CrossRefGoogle Scholar
  26. 26.
    Tian, Z., & Giannakis, G. B. (2007). Compressed sensing for wideband cognitive radios. In IEEE international conference on acoustics, speech and signal processing (ICASSP). Honolulu, HI.Google Scholar
  27. 27.
    La, C., & Do, M. N. (2006). Tree-based orthogonal matching pursuit algorithm for signal reconstruction. In IEEE international conference on image processing (ICIP) (pp. 1277–1280). Atlanta, GA.Google Scholar
  28. 28.
    Bui, H., La, C., & Do, M. (2015). A fast tree-based algorithm for compressed sensing with sparse-tree prior. Signal Processing, 108, 628–641.CrossRefGoogle Scholar
  29. 29.
    Mallat, S., & Hwang, W. L. (1992). Singularity detection and processing with wavelets. IEEE Transactions on Information Theory, 38(2), 617–643.MathSciNetCrossRefzbMATHGoogle Scholar
  30. 30.
    Egilmez, H. E., & Ortega, A. (2015). Wavelet-based compressed spectrum sensing for cognitive radio wireless networks. In IEEE international conference on acoustics, speech and signal processing (ICASSP) (pp. 3157–3161). Queensland, Australia.Google Scholar
  31. 31.
    Wang, Y., Tian, Z., & Feng, C. (2010). A two-step compressed spectrum sensing scheme for wideband cognitive radios. In IEEE global telecommunications conference (GLOBECOM) (pp. 1–5). Miami, FL.Google Scholar
  32. 32.
    Sun, H., Chiu, W. Y., & Nallanathan, A. (2012). Adaptive compressive spectrum sensing for wideband cognitive radios. IEEE Communications Letters, 16(11), 1812–1815.CrossRefGoogle Scholar
  33. 33.
    Tian, Z., Tafesse, Y., & Sadler, B. M. (2012). Cyclic feature detection with sub-nyquist sampling for wideband spectrum sensing. IEEE Journal of Selected Topics in Signal Processing, 6(1), 58–69.CrossRefGoogle Scholar
  34. 34.
    Davenport, M. A., Boufounos, P. T., Wakin, M. B., & Baraniuk, R. G. (2010). Signal processing with compressive measurements. IEEE Journal of Selected Topics in Signal Processing, 4(2), 445–460.CrossRefGoogle Scholar
  35. 35.
    Hong, S. (2010) Direct spectrum sensing from compressed measurements. In IEEE military communications conference (MILCOM) (pp. 1187–1192). San Jose, CA.Google Scholar
  36. 36.
    Cohen, D., & Eldar, Y. C. (2014). Sub-nyquist sampling for power spectrum sensing in cognitive radios: A unified approach. IEEE Transactions on Signal Processing, 62(15), 3897–3910.MathSciNetCrossRefzbMATHGoogle Scholar
  37. 37.
    Rudelson, M., & Vershynin, R. (2008). On sparse reconstruction from Fourier and Gaussian measurements. Communications on Pure and Applied Mathematics, 61(8), 1025–1045.MathSciNetCrossRefzbMATHGoogle Scholar
  38. 38.
    Haviv, I., & Regev, O. (2015). The restricted isometry property of subsampled Fourier matrices. arXiv preprint, arXiv:1507.01768.
  39. 39.
    Unser, M., & Tafti, P. D. (2011). Stochastic models for sparse and piecewise-smooth signals. IEEE Transactions on Signal Processing, 59(3), 989–1006.MathSciNetCrossRefzbMATHGoogle Scholar
  40. 40.
    Björck, A. (1996). Numerical methods for least squares problems. Philadelphia: SIAM.CrossRefzbMATHGoogle Scholar
  41. 41.
    Donoho, D. L., Tsaig, Y., Drori, I., & Starck, J. L. (2012). Sparse solution of underdetermined systems of linear equations by stagewise orthogonal matching pursuit. IEEE Transactions on Information Theory, 58(2), 1094–1121.MathSciNetCrossRefzbMATHGoogle Scholar
  42. 42.
    Baraniuk, R. G. (2007). Compressive sensing. IEEE Signal Processing Magazine, 24(4), 118–121.CrossRefGoogle Scholar
  43. 43.
    Chen, S. S., Donoho, D. L., & Saunders, M. A. (1998). Atomic decomposition by basis pursuit. SIAM Journal on Scientific Computing, 20(1), 33–61.MathSciNetCrossRefzbMATHGoogle Scholar
  44. 44.
    Coifman, R. R., & Wickerhauser, M. V. (1992). Entropy-based algorithms for best basis selection. IEEE Transactions on Information Theory, 38(2), 713–718.CrossRefzbMATHGoogle Scholar
  45. 45.
    Ruch, D. K., & Van Fleet, P. J. (2011). Wavelet theory: An elementary approach with applications. Hoboken: Wiley.Google Scholar
  46. 46.
    Fawcett, T. (2006). An introduction to ROC analysis. Pattern Recognition Letters, 27(8), 861–874.MathSciNetCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2017

Authors and Affiliations

  • Michael M. Abdel-Sayed
    • 1
  • Ahmed Khattab
    • 1
    Email author
  • Mohamed F. Abu-Elyazeed
    • 1
  1. 1.Electronics and Electrical Communications Engineering DepartmentCairo UniversityGizaEgypt

Personalised recommendations