Advertisement

Wireless Networks

, Volume 25, Issue 1, pp 63–74 | Cite as

Scalable group-based machine-to-machine communications in LTE-advanced networks

  • Younghwan Jung
  • Daehee KimEmail author
  • Sunshin An
Article

Abstract

The legacy long term evolution (LTE) networks suffer from scalability problems when a massive number of Internet of Things devices enter the network simultaneously. In this paper, we investigate the root causes of the overload problems due to a massive number of machine devices when accessing to the LTE network, and evaluate current standardized solutions of 3GPP in terms of overload aspects. As a result, we derive the limitations of 3GPP standardized solutions, and then suggest a novel group-based communication method and a set of required functions for the group-based communication. The simulation results show that our proposed group-based communication dramatically decreases the signaling load when compared to the legacy LTE and other 3GPP solutions.

Keywords

Long term evolution Internet of Things Machine-to-machine Group-based communications 

Notes

Acknowledgements

This work was supported by the Soonchunhyang University Research Fund (No. 20170000). This work was supported by the National Research Foundation of Korea (NRF) grant funded by the Korea Government (MSIP; Ministry of Science, ICT & Future Planning) (No. 2017R1C1B5016017).

References

  1. 1.
    Decuir, J. (2015). The story of the Internet of Things: Issues in utility, connectivity, and security. IEEE Consumer Electronics Magazine, 4(4), 54–61.CrossRefGoogle Scholar
  2. 2.
    Sheng, Z., Mahapatra, C., Zhu, C., & Leung, V. C. (2015). Recent advances in industrial wireless sensor networks toward efficient management in IoT. IEEE Access, 3, 622–637.CrossRefGoogle Scholar
  3. 3.
    Zanella, A., Bui, N., Castellani, A., Vangelista, L., & Zorzi, M. (2014). Internet of things for smart cities. IEEE Internet of Things Journal, 1(1), 22–32.CrossRefGoogle Scholar
  4. 4.
    Perera, C., Liu, C. H., Jayawardena, S., & Chen, M. (2014). A survey on internet of things from industrial market perspective. IEEE Access, 2, 1660–1679.CrossRefGoogle Scholar
  5. 5.
    Kamilaris, A., & Pitsillides, A. (2016). Mobile phone computing and the Internet of Things: A survey. IEEE Internet of Things Journal, 3(6), 885–898.CrossRefGoogle Scholar
  6. 6.
    Al-Fuqaha, A., Guizani, M., Mohammadi, M., Aledhari, M., & Ayyash, M. (2015). Internet of things: A survey on enabling technologies, protocols, and applications. IEEE Communications Surveys & Tutorials, 17(4), 2347–2376.CrossRefGoogle Scholar
  7. 7.
    Chen, M., Wan, J., González, S., Liao, X., & Leung, V. C. (2014). A survey of recent developments in home M2M networks. IEEE Communications Surveys & Tutorials, 16(1), 98–114.CrossRefGoogle Scholar
  8. 8.
    Zanella, A., Zorzi, M., dos Santos, A. F., Popovski, P., Pratas, N., Stefanovic, Č., et al. (2013). M2M massive wireless access: Challenges, research issues, and ways forward. In Proceedings of 2013 IEEE Globecom workshops (GC Wkshps) (pp. 151–156).Google Scholar
  9. 9.
    Sigfox. http://www.sigfox.com. Accessed 2017-06-02.
  10. 10.
    LoRa. https://www.lora-alliance.org. Accessed 2017-06-02.
  11. 11.
    Palattella, M. R., Dohler, M., Grieco, A., Rizzo, G., Torsner, J., Engel, T., et al. (2016). Internet of Things in the 5G Era: Enablers, architecture, and business models. IEEE Journal on Selected Areas in Communications, 34(3), 510–527.CrossRefGoogle Scholar
  12. 12.
    Gupta, A., & Jha, R. K. (2015). A survey of 5G network: Architecture and emerging technologies. IEEE Access, 3, 1206–1232.CrossRefGoogle Scholar
  13. 13.
    Wang, C. X., Haider, F., Gao, X., You, X. H., Yang, Y., Yuan, D., et al. (2014). Cellular architecture and key technologies for 5G wireless communication networks. IEEE Communications Magazine, 52(2), 122–130.CrossRefGoogle Scholar
  14. 14.
    Taleb, T., & Kunz, A. (2012). Machine type communications in 3GPP networks: Potential, challenges, and solutions. IEEE Communications Magazine, 50(3), 178–184.CrossRefGoogle Scholar
  15. 15.
    Zheng, K., Ou, S., Alonso-Zarate, J., Dohler, M., Liu, F., & Zhu, H. (2014). Challenges of massive access in highly dense LTE-advanced networks with machine-to-machine communications. IEEE Wireless Communications, 21(3), 12–18.CrossRefGoogle Scholar
  16. 16.
    GPP TR 23.888 System improvements for machine-type communications (MTC), V11.0.0, September 2012.Google Scholar
  17. 17.
    GPP TR 23.887 Study on machine-type communications (MTC) and other mobile data applications communications enhancements, V12.0.0, December 2013.Google Scholar
  18. 18.
    GPP TR 45.820 Cellular system support for ultra-low complexity and low throughput Internet of Things (CIoT), V13.1.0, November 2015.Google Scholar
  19. 19.
    GPP TR 23.720 Study on architecture enhancements for cellular Internet of Things, V13.0.0, May 2016.Google Scholar
  20. 20.
    GPP TR 37.868 RAN improvements for machine-type communications, V11.0.0, September 2011.Google Scholar
  21. 21.
    GPP TR 36.888 Study on provision of low-cost machine-type communications (MTC) user equipments (UEs) based on LTE, V12.0.0, June 2013.Google Scholar
  22. 22.
    GPP TR 36.869 study on enhancements to machine-type communications (MTC) and other mobile data applications; radio access network (RAN) aspects, V12.0.0, September 2013.Google Scholar
  23. 23.
    Lo, A., Law, Y. W., & Jacobsson, M. (2013). A cellular-centric service architecture for machine-to-machine (M2M) communications. IEEE Wireless Communications, 20(5), 143–151.CrossRefGoogle Scholar
  24. 24.
    Shin, S. Y., & Triwicaksono, D. (2012). Radio resource control scheme for machine-to-machine communication in LTE infrastructure. In Proceedings of 2012 international conference on ICT convergence (ICTC) (pp. 1–6).Google Scholar
  25. 25.
    Arouk, O., Ksentini, A., & Taleb, T. (2016). Group paging-based energy saving for massive MTC accesses in LTE and beyond networks. IEEE Journal on Selected Areas in Communications, 34(5), 1086–1102.CrossRefGoogle Scholar
  26. 26.
    Zheng, K., Hu, F., Wang, W., Xiang, W., & Dohler, M. (2012). Radio resource allocation in LTE-advanced cellular networks with M2M communications. IEEE Communications Magazine, 50(7), 184–192.CrossRefGoogle Scholar
  27. 27.
    Wali, P. K., & Das, D. (2014). A novel access scheme for IoT communications in LTE-Advanced network. In Proceedings of 2014 IEEE international conference on advanced networks and telecommuncations systems (ANTS) (pp. 1–6).Google Scholar
  28. 28.
    Samdanis, K., Kunz, A., Hossain, M. I., & Taleb, T. (2013). Virtual bearer management for efficient MTC radio and backhaul sharing in LTE networks. In Proceedings of 2013 IEEE 24th annual international symposium on personal, indoor, and mobile radio communications (PIMRC) (pp. 2780–2785).Google Scholar
  29. 29.
    GPP TS 23.401 General Packet Radio Service (GPRS) enhancements for Evolved Universal Terrestrial Radio Access Network (E-UTRAN) access, V13.7.0, June 2016.Google Scholar
  30. 30.
    GPP TS 36.300 Evolved Universal Terrestrial Radio Access (E-UTRA) and Evolved Universal Terrestrial Radio Access Network (E-UTRAN); overall description; Stage 2, V13.3.0, April 2016.Google Scholar
  31. 31.
    GPP TS 36.413 Evolved Universal Terrestrial Radio Access Network (E-UTRAN); S1 Application Protocol (S1AP), V13.2.0, March 2016.Google Scholar
  32. 32.
    GPP TS 36.331 Evolved Universal Terrestrial Radio Access (E-UTRA); Radio Resource Control (RRC); Protocol specification, V13.1.0, April 2016.Google Scholar
  33. 33.
    GPP TS 36.304 Evolved Universal Terrestrial Radio Access (E-UTRA); User Equipment (UE) procedures in idle mode, V13.1.0, March 2016.Google Scholar
  34. 34.
    GPP R2-164567 Introduction Control Plane CIoT EPS Optimization, June 2016.Google Scholar
  35. 35.
    GPP R3-161439 Introduction of common impacts of NB-IoT solutions, June 2016.Google Scholar
  36. 36.
    GPP R3-161543 Introduction of the UE Context Resume function, June 2016.Google Scholar
  37. 37.
    Zhao, N., Yu, F. R., Sun, H., & Li, M. (2016). Adaptive power allocation schemes for spectrum sharing in interference-alignment-based cognitive radio networks. IEEE Transactions on Vehicular Technology, 65(5), 3700–3714.CrossRefGoogle Scholar
  38. 38.
    Zhao, N., Yu, F. R., & Leung, V. C. M. (2015). Opportunistic communications in interference alignment networks with wireless power transfer. IEEE Wireless Communications, 22(1), 88–95.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2017

Authors and Affiliations

  1. 1.Division of Network BusinessSamsung Electronics Co., Ltd.SuwonKorea
  2. 2.Department of Internet of ThingsSoonchunhyang UniversityAsanKorea
  3. 3.Department of Electronics EngineeringKorea UniversitySeoulKorea

Personalised recommendations