Wireless Networks

, Volume 25, Issue 1, pp 29–47 | Cite as

High-rise structure monitoring with elevator-assisted wireless sensor networking: design, optimization, and case study

  • Feng WangEmail author
  • Dan Wang
  • Jiangchuan Liu


Wireless sensor networks have been widely suggested to be used in cyber-physical systems for structural health monitoring. However, for nowadays high-rise structures (e.g., the Guangzhou New TV Tower, peaking at 600 m above ground), the extensive vertical dimension creates enormous challenges toward sensor data collection, beyond those addressed in state-of-the-art mote-like systems. One example is data transmission from sensor nodes to the base station. Given the long span of the civil structures, neither a strategy of long-range one-hop data transmission nor short-range hop-by-hop communication is cost-efficient. In this paper, we propose EleSense, a novel high-rise structure monitoring framework that uses elevators to assist data collection. In EleSense, an elevator is attached with the base station and collects data when it moves to serve passengers; as such, the communication distance can be effectively reduced. To maximize the benefit, we formulate the problem as a cross-layer optimization problem and propose a centralized algorithm to solve it optimally. We further propose a distributed implementation to accommodate the hardware capability of sensor nodes and address other practical issues. Through extensive simulations, we show that EleSense has achieved a significant throughput gain over the case without elevators and a straightforward 802.11 MAC scheme without cross-layer optimization. Our distributed implementation in EleSense performs only marginally worse (<1%) than the centralized optimal algorithm. Moreover, EleSense can greatly reduce the communication costs while maintaining good fairness and reliability. Our case study with real experiments and data sets on the Guangzhou New TV Tower further validates the effectiveness of EleSense.


Wireless sensor network Cyber-physical systems Data collection High-rise structural health monitoring Cross-layer optimization Scheduling 



This research is partly supported by a Start-up Grant from the University of Mississippi, an NSF I/UCRC Grant (1539990), an Industrial Canada Technology Demonstration Program (TDP) grant, an NSERC Discovery Grant, and an E.W.R. Steacie Memorial Fellowship.


  1. 1.
    Xu, N., Rangwala, S., Chintalapudi, K. K., Ganesan, D., Broad, A., Govindan, R., et al. (2004). A wireless sensor network for structural monitoring. In Proceedings of ACM SenSys (pp. 13–24).Google Scholar
  2. 2.
    Kim, S., Pakzad, S., Culler, D., Demmel, J., Fenves, G., Glaser, S., et al. (2007). Health monitoring of civil infrastructures using wireless sensor networks. In Proceedings of ACM/IEEE IPSN (pp. 254–263).Google Scholar
  3. 3.
    Chebrolu, K., Raman, B., Mishra, N., Valiveti, P. K., & Kumar, R. (2008). BriMon: A sensor network system for railway bridge monitoring. In Proceedings of ACM MobiSys (pp. 2–14).Google Scholar
  4. 4.
    Hackmann, G., Sun, F., Castaneda, N., Lu, C. & Dyke, S. (2008). A holistic approach to decentralized structural damage localization using wireless sensor networks. In Proceedings of IEEE RTSS (pp. 35–46).Google Scholar
  5. 5.
    Ceriotti, M., Mottola, L., Picco, G. P., Murphy, A. L., Guna, S., Corra, M., et al. (2009). Monitoring heritage buildings with wireless sensor networks: The Torre Aquila deployment. In Proceedings of ACM/IEEE IPSN (pp. 277–288).Google Scholar
  6. 6.
    Li, B., Wang, D., Wang, F., & Ni, Y. (2010). High quality sensor placement for SHM systems: Refocusing on application demands. In Proceedings of IEEE INFOCOM (pp. 1–9).Google Scholar
  7. 7.
    Severino, R., Gomes, R., Alves, M., Sousa, P., Tovar, E., Ramos, L., et al. (2010). A wireless sensor network platform for structural health monitoring: Enabling accurate and synchronized measurements through COTS+custom-based design. In Proceedings of IFAC international conference on management and control of production and logistics (pp. 375–382).Google Scholar
  8. 8.
    Wang, F., Wang, D., & Liu, J. (2011). Utilizing elevator for wireless sensor data collection in high-rise structure monitoring. In Proceedings of IEEE IWQoS (pp. 1–9).Google Scholar
  9. 9.
    Wang, F., Wang, D., & Liu, J. (2012). EleSense: Elevator-assisted wireless sensor data collection for high-rise structure monitoring. In Proceedings of IEEE INFOCOM (pp. 163–171).Google Scholar
  10. 10.
    Xu, K., Hassanein, H., & Takahara, G. (2005). Relay node deployment strategies in heterogeneous wireless sensor networks: Multiple-hop communication case. In Proceedings of IEEE SECON (pp. 575–585).Google Scholar
  11. 11.
    Hou, Y. T., Shi, Y., Sherali, H. D., & Midkiff, S. F. (2005). Prolonging sensor network lifetime with energy provisioning and relay node placement. In Proceedings of IEEE SECON (pp. 295–304).Google Scholar
  12. 12.
    Wang, F., Wang, D., & Liu, J. (2011). Traffic-aware relay node deployment: Maximizing lifetime for data collection wireless sensor networks. IEEE Transactions on Parallel and Distributed Systems, 22(8), 1415–1423.CrossRefGoogle Scholar
  13. 13.
    Ganeriwal, S., Kumar, R., & Srivastava, M. B. (2003). Timing-sync protocol for sensor networks. In Proceedings of ACM SenSys (pp. 138–149).Google Scholar
  14. 14.
    Li, Q., & Rus, D. (2006). Global clock synchronization in sensor networks. IEEE Transactions on Computers, 55(2), 214–226.CrossRefGoogle Scholar
  15. 15.
    PalChaudhuri, S., Saha, A. K., & Johnson, D. B. (2004). Adaptive clock synchronization in sensor networks. In Proceedings of ACM/IEEE IPSN (pp. 340–348).Google Scholar
  16. 16.
    Schmid, T., Charbiwala, Z., Anagnostopoulou, Z., Srivastava, M. B., & Dutta, P. (2010). A case against routing-integrated time synchronization. In Proceedings of ACM SenSys (pp. 267–280).Google Scholar
  17. 17.
    Rowe, A., Gupta, V., & Rajkumar, R. R. (2009). Low-power clock synchronization using electromagnetic energy radiating from AC power lines. In Proceedings of ACM SenSys (pp. 211–224).Google Scholar
  18. 18.
    Li, Y., Qiu, L., Zhang, Y., Mahajan, R., & Rozner, E. (2008). Predictable performance optimization for wireless networks. In Proceedings of ACM SIGCOMM (pp. 413–425).Google Scholar
  19. 19.
    Ko, J., Ni, Y., Zhou, H., Wang, J., & Zhou, X. (2009). Investigation concerning structural health monitoring of an instrumented cable-stayed bridge. Structure and Infrastructure Engineering, 5(9), 497–513.CrossRefGoogle Scholar
  20. 20.
    Zhang, T., Wang, D., Cao, J., Ni, Y. Q., Chen, L., & Chen, D. (2012). Elevator-assisted sensor data collection for structural health monitoring. IEEE Transactions on Mobile Computing, 11(10), 1555–1568.CrossRefGoogle Scholar
  21. 21.
    Wang, Z. M., Basagni, S., Melachrinoudis, E., & Petrioli, C. (2005). Exploiting sink mobility for maximizing sensor networks lifetime. In Proceedings of IEEE HICSS (pp. 1530–1605).Google Scholar
  22. 22.
    Jea, D., Somasundara, A., & Srivastava, M. (2005). Multiple controlled mobile elements (data mules) for data collection in sensor networks. In Proceedings of IEEE DCOSS (pp. 244–257).Google Scholar
  23. 23.
    Luo, J., & Hubaux, J.-P. (2005). Joint mobility and routing for lifetime elongation in wireless sensor networks. In Proceedings of IEEE INFOCOM (pp. 1735–1746).Google Scholar
  24. 24.
    Xing, G., Wang, T., Jia, W., & Li, M. (2008). Rendezvous design algorithms for wireless sensor networks with a mobile base station. In Proceedings of ACM MobiHoc (pp. 231–240).Google Scholar
  25. 25.
    Tekdas, O., Lim, J. H., Terzis, A., & Isler, V. (2009). Using mobile robots to harvest data from sensor fields. IEEE Wireless Communications, 16(1), 22–28.CrossRefGoogle Scholar
  26. 26.
    Tang, S., Yuan, J., Li, X., Liu, Y., Chen, G., Gu, M., et al. (2010). DAWN: Energy efficient data aggregation in WSN with mobile sinks. In Proceedings of IEEE IWQoS (pp. 1–9).Google Scholar
  27. 27.
    Koç, M., & Korpeoglu, I. (2015). Coordinated movement of multiple mobile sinks in a wireless sensor network for improved lifetime. EURASIP Journal on Wireless Communications and Networking, 2015(245), 1–16.Google Scholar
  28. 28.
    Shi, Y., & Hou, T. (2012). Some fundamental results on base station movement problem for wireless sensor networks. IEEE/ACM Transactions on Networking, 20(4), 1054–1067.CrossRefGoogle Scholar
  29. 29.
    Xue, L., Kim, D., Zhu, Y., Li, D., Wang, W., & Tokuta, A. (2014). Multiple heterogeneous data ferry trajectory planning in wireless sensor networks. In Proceedings of IEEE INFOCOM (pp. 2274–2282).Google Scholar
  30. 30.
    Lu, G., Krishnamachari, B., & Raghavendra, C. S. (2004). An adaptive energy-efficient and low-latency MAC for data gathering in wireless sensor networks. In Proceedings of IEEE IPDPS (pp. 224–224).Google Scholar
  31. 31.
    Ahn, G.-S., Miluzzo, E., Campbell, A. T., Hong, S. G., & Cuomo, F. (2006). Funneling-MAC: A localized, sink-oriented MAC for boosting fidelity in sensor networks. In Proceedings of ACM SenSys (pp. 293–306).Google Scholar
  32. 32.
    Song, W.-Z., Yuan, F., & LaHusen, R. (2006). Time-optimum packet scheduling for many-to-one routing in wireless sensor networks. In Proceedings of IEEE MASS (pp. 81–90).Google Scholar
  33. 33.
    Burri, N., von Rickenbach, P., & Wattenhofer, R. (2007). Dozer: Ultra-low power data gathering in sensor networks. In Proceedings of ACM/IEEE IPSN (pp. 450–459).Google Scholar
  34. 34.
    Ee, C. T., & Bajcsy, R. (2004). Congestion control and fairness for many-to-one routing in sensor networks. In Proceedings of ACM SenSys (pp. 148–161).Google Scholar
  35. 35.
    Chen, S., & Zhang, Z. (2006). Localized algorithm for aggregate fairness in wireless sensor networks. In Proceedings of ACM MobiCom (pp. 274–285).Google Scholar
  36. 36.
    Ren, C., Mao, X., Li, X., Xu, P., & Dai, G. (2009). Efficient data collection for wireless networks: Delay and energy tradeoffs. In Proceedings of IEEE GlobeCom (pp. 1–6).Google Scholar
  37. 37.
    Crowcroft, J., Segal, M., & Levin, L. (2014). Improved structures for data collection in wireless sensor networks. In Proceedings of IEEE INFOCOM (pp. 1375–1383).Google Scholar
  38. 38.
    Chen, L., Low, S., Chiang, M., & Doyle, J. (2006). Cross-layer congestion control, routing and scheduling design in ad hoc wireless networks. In Proceedings of IEEE INFOCOM (pp. 1–13).Google Scholar
  39. 39.
    Zhu, J., Chen, S., Bensaou, B., & Hung, K.-L. (2007). Tradeoff between lifetime and rate allocation in wireless sensor networks: A cross layer approach. In Proceedings of IEEE INFOCOM (pp. 267–275).Google Scholar
  40. 40.
    Zhang, Q., & Zhang, Y.-Q. (2008). Cross-layer design for QoS support in multi-hop wireless networks. Proceedings of the IEEE, 96(1), 64–76.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2017

Authors and Affiliations

  1. 1.Department of Computer and Information ScienceUniversity of MississippiUniversityUSA
  2. 2.Department of ComputingThe Hong Kong Polytechnic UniversityHung Hom, KowloonHong Kong
  3. 3.School of Computing ScienceSimon Fraser UniversityBurnabyCanada

Personalised recommendations