The isc gene cluster expression ethanol tolerance associated improves its ethanol production by organic acids flux redirection in the ethanologenic Escherichia coli KO11 strain

  • Lorena Martínez-Alcantar
  • Alma Laura Díaz-Pérez
  • Jesús Campos-GarcíaEmail author
Original Paper


Fossil fuels consumption impacts the greenhouse gas emissions. Biofuels are considered as alternative renewable energy sources to reduce the fossil fuels dependency. Bioethanol produced by recombinant microorganisms is a widely suggested alternative to increase the yield in fermentation processes. However, ethanol and acetate accumulation under the fermentation process had been described as important stressors for the metabolic capabilities of the microorganisms, stopping the fermentation process and affecting the ethanol yield. Ethanol tolerance is a determining factor in the improvement of fermentative properties of microorganisms; however understanding of ethanol tolerance is limited. The engineered Escherichia coli KO11 strain has been studied in detail and used as an ethanologenic bacteria model. The strain is capable of using glucose and xylose for an efficient ethanol yield. In the current work, the effect of the iron-sulfur cluster (ISC) over-expression in the KO11 strain, on its tolerance and ethanol yield, was evaluated. Fatty acids profiles of membrane phospholipids in the E. coli KO11 were modified under ethanol addition, but not due to the hscA mutation. The hscA mutation provoked a decrease in ethanol tolerance in the Kmp strain when was grown with 2% ethanol, in comparison to KO11 parent strain. Ethanol tolerance was improved in the mutant Kmp complemented with the recombinant isc gene cluster (pJC10 plasmid) from LD50 2.16% to LD50 3.8% ethanol. In batch fermentation on 1 L bioreactor using mineral medium with glucose (120 g/L), the KO11 strain showed ethanol production efficiencies of ~ 76.9%, while the hscA mutant (Kmp) ~ 75.4% and the transformed strain Kmp(pJC10) showed ~ 92.4% efficiency. Ethanol amount increase in the engineered Kmp(pJC10) strain was correlated with less organic acids (such as acetate and lactate) production in the fermentation medium (2.3 g/L), compared to that in the KO11 (17.05 g/L) and the Kmp (16.62 g/L). Alcohol dehydrogenase (ADH) activity was increased ~ 350% in the transformed Kmp(pJC10) strain, whereas in the Kmp mutant, the phosphoglycerate kinase (PGK), pyruvate kinase (PYK), and ADH activities were diminished, comparing to KO11. The results suggest that the isc system over-expression in the ethanologenic E. coli KO11 strain, increases ethanol yield mainly by improving ethanol tolerance and ADH activity, and by redirecting the metabolic flux from acetate synthesis to ethanol.


Biofuels Ethanol tolerance Fermentation Iron sulfur cluster Organic acids 



This study was funded by the Consejo Nacional de Ciencia y Tecnología (CONACYT) of México (grant number 256119) and by a Universidad Michoacana de San Nicolás de Hidalgo/C.I.C.2.14 grant. We thank to L.O. Ingram for the KO11 strain donation.

Compliance with ethical standards

Conflict of interest

The authors declare there are no conflict of interest.


  1. Andrew AJ, Dutkiewicz R, Knieszner H, Craig EA, Marszalek J (2006) Characterization of the interaction between the J-protein Jac1p and the scaffold for Fe-S cluster biogenesis, Isu1p. J Biol Chem 281(21):14580–14587CrossRefGoogle Scholar
  2. Barbosa M, Yomano LP, Ingram L (1994) Cloning, sequencing and expression of stress genes from the ethanol-producing bacterium Zymomonas mobilis: the groESL operon. Gene 148:51–57CrossRefGoogle Scholar
  3. Beinert H, Holm RH, Munck E (1997) Iron-sulfur clusters: nature's modular, multipurpose structures. Science 277:653–659CrossRefGoogle Scholar
  4. Cabiscol E, Aguilar J, Ros J (1994) Metal-catalyzed oxidation of Fe2+ dehydrogenases. Consensus target sequence between propanediol oxidoreductase of Escherichia coli and alcohol dehydrogenase II of Zymomonas mobilis. J Biol Chem 269:6592–6597PubMedGoogle Scholar
  5. Campos-García J, Caro AD, Nájera R, Miller-Maier RM, Al-Tahhan RA, Soberón-Chávez G (1998) The Pseudomonas aeruginosa rhlG gene encodes an NADPH-dependent β-ketoacyl reductase which is specifically involved in rhamnolipid synthesis. J Bacteriol 180:4442–4451PubMedPubMedCentralGoogle Scholar
  6. Campos-Garcia J, Ordóñez LG, Soberón-Chávez G (2000) The Pseudomonas aeruginosa hscA gene encodes Hsc66, a DnaK homologue. Microbiology 146:1429–1435CrossRefGoogle Scholar
  7. Campos-García J, Vargas A, Farías-Rosales L, Miranda AL, Meza-Carmen V, Díaz-Pérez AL (2018) Improving the organoleptic properties of a craft Mezcal beverage by increasing fatty acid ethyl ester contents through ATF1 expression in an engineered Kluyveromyces marxianus UMPe-1 yeast. J Agric Food Chem 66:4469–4480. CrossRefPubMedGoogle Scholar
  8. Chi Z, Arneborg N (1999) Relationship between lipid composition, frequency of ethanol-induced respiratory deficient mutants, and ethanol tolerance in Saccharomyces cerevisiae. J Appl Microbiol 86:1047–1052CrossRefGoogle Scholar
  9. Conway T, Osman YA, Konnan JI, Hoffmann EM, Ingram LO (1987) Promoter and nucleotide sequences of the Zymomonas mobilis pyruvate decarboxylase. J Bacteriol 169:949–954CrossRefGoogle Scholar
  10. Dutkiewicz R, Schilke B, Knieszner H, Walter W, Craig EA, Marszalek J (2003) Ssq1, a mitochondrial Hsp70 involved in iron-sulfur (Fe/S) center biogenesis Similarities to and differences from its bacterial counterpart. J Biol Chem 278:29719–29727CrossRefGoogle Scholar
  11. Farrugia G, Balzan R (2012) Oxidative stress and programmed cell death in yeast. Front Oncol 20(2):64. CrossRefGoogle Scholar
  12. Geddes RD, Wang X, Yomano LP, Miller EN, Zheng H, Shanmugam KT, Ingram LO (2014) Polyamine transporters and polyamines increase furfural tolerance during xylose fermentation with ethanologenic Escherichia coli strain LY180. Appl Environ Microbiol 80:5955–5964. CrossRefPubMedPubMedCentralGoogle Scholar
  13. Gomez M, Pérez-Gallardo RV, Sánchez LA, Díaz-Pérez AL, Cortés-Rojo C, Meza Carmen V, Saavedra-Molina A, Lara-Romero J, Jiménez-Sandoval S, Rodríguez F, Rodríguez-Zavala JS, Campos-García J (2014) Malfunctioning of the iron-sulfur cluster assembly machinery in Saccharomyces cerevisiae produces oxidative stress via an iron-dependent mechanism, causing dysfunction in respiratory complexes. PLoS ONE 9:e111585. CrossRefPubMedPubMedCentralGoogle Scholar
  14. Gonzalez R, Tao H, Purvis J, York S, Shanmugam K, Ingram L (2003) Gene array-based identification of changes that contribute to ethanol tolerance in ethanologenic Escherichia coli: comparison of KO11 (parent) to LY01 (resistant mutant). Biotechnol Progr 19:612–623CrossRefGoogle Scholar
  15. Hoff KG, Silberg JJ, Vickery LE (2000) Interaction of the iron–sulfur cluster assembly protein IscU with the Hsc66/Hsc20 molecular chaperone system of Escherichia coli. Proc Natl Acad Sci USA 97:7790–7795CrossRefGoogle Scholar
  16. Huerta-Beristain G, Utrilla J, Hernandez-Chavez G, Bolivar F, Gosset G, Martinez A (2008) Specific ethanol production rate in ethanologenic Escherichia coli strain KO11 is limited by pyruvate decarboxylase. J Mol Microbiol Biotechnol 15:55–64. CrossRefPubMedGoogle Scholar
  17. Ingram L (1976) Adaptation of membrane lipids to alcohols. J Bacteriol 125:670–678PubMedPubMedCentralGoogle Scholar
  18. Ingram L, Conway T (1988) Expression of different levels of ethanologenic enzymes from Zymomonas mobilis in recombinant strains of Escherichia coli. Appl Environ Microbiol 54:397–404PubMedPubMedCentralGoogle Scholar
  19. Ingram L, Vreeland N (1980) Differential effects of ethanol and hexanol on the Escherichia coli cell envelope. J Bacteriol 144:481–488PubMedPubMedCentralGoogle Scholar
  20. Ingram L, Aldrich H, Borges A, Causey T, Martinez A, Morales F, Saleh A, Underwood S, Yomano L, York S (1999) Enteric bacterial catalysts for fuel ethanol production. Biotechnol Progr 15:855–866CrossRefGoogle Scholar
  21. Ishmayana S, Kennedy UJ, Learmonth RP (2017) Further investigation of relationships between membrane fluidity and ethanol tolerance in Saccharomyces cerevisiae. World J Microbiol Biotechnol 33:218. CrossRefGoogle Scholar
  22. Kitagaki H, Araki Y, Funato K, Shimoi H (2007) Ethanol-induced death in yeast exhibits features of apoptosis mediated by mitochondrial fission pathway. FEBS Lett. 581(16):2935–2942CrossRefGoogle Scholar
  23. Koppolu V, Vasigala VK (2016) Role of Escherichia coli in biofuel production. Microbiol Insights 9:29–35. CrossRefPubMedPubMedCentralGoogle Scholar
  24. Kushner SR, Nagaishi H, Templin A, Clark AJ (1971) Genetic recombination in Escherichia coli: the role of exonuclease I. Proc Natl Acad Sci USA 68:824. CrossRefPubMedGoogle Scholar
  25. Lau MW, Gunawan C, Balan V, Dale BE (2010) Comparing the fermentation performance of Escherichia coli KO11, Saccharomyces cerevisiae 424A (LNH-ST) and Zymomonas mobilis AX101 for cellulosic ethanol production. Biotechnol Biofuels 27(3):11. CrossRefGoogle Scholar
  26. Lill R, Hoffmann B, Molik S, Pierik A, Rietzschel N, Stehling O, Uzarska M, Webert H, Wilbrecht C, Muhlenhoff U (2012) The role of mitochondria in cellular iron-sulfur protein biogenesis and iron metabolism. Biochim Biophys Acta 1823:1491–1508. CrossRefPubMedGoogle Scholar
  27. López-Alvarez A, Díaz-Pérez AL, Sosa-Aguirre C, Macías-Rodríguez L, Campos-García J (2012) Ethanol yield and volatile compound content in fermentation of agave must by Kluyveromyces marxianus UMPe-1 comparing with Saccharomyces cerevisiae baker's yeast used in tequila production. J Biosci Bioeng 113:614–618CrossRefGoogle Scholar
  28. Ma M, Liu Z (2010) Mechanisms of ethanol tolerance in Saccharomyces cerevisiae. Appl Microbiol Biotechnol 87:829–845. CrossRefPubMedGoogle Scholar
  29. Martínez-Alcántar L, Madrigal A, Sánchez-Briones L, Díaz-Pérez AL, López-Bucio JS, Campos-García J (2019) Over-expression of Isu1p and Jac1p increases the ethanol tolerance and yield by superoxide and iron homeostasis mechanism in an engineered Saccharomyces cerevisiae yeast. J Ind Microbiol Biotechnol 46(7):925–936. CrossRefPubMedGoogle Scholar
  30. Mettert EL, Kiley PJ (2015) Fe–S proteins that regulate gene expression. Biochim Biophys Acta (BBA) 1853:1284–1293. CrossRefGoogle Scholar
  31. Mills TY, Sandoval NR, Gill RT (2009) Cellulosic hydrolysate toxicity and tolerance mechanisms in Escherichia coli. Biotechnol Biofuels 15:2–26. CrossRefGoogle Scholar
  32. Oden KL, DeVeaux LC, Vibat CRT, Croman JE Jr, Gennis RB (1990) Genomic replacement in Escherichia coli K-12 using covalently closed circular plasmid DNA. Gene 96:29–36CrossRefGoogle Scholar
  33. Ohta K, Beall D, Mejia J, Shanmugam K, Ingram L (1991) Genetic improvement of Escherichia coli for ethanol production: chromosomal integration of Zymomonas mobilis genes encoding pyruvate decarboxylase and alcohol dehydrogenase II. Appl Environ Microbiol 57:893–900PubMedPubMedCentralGoogle Scholar
  34. Orencio-Trejo M, Flores N, Escalante A, Hernandez-Chavez G, Bolivar F, Gosset G, Martinez A (2008) Metabolic regulation analysis of an ethanologenic Escherichia coli strain based on RT-PCR and enzymatic activities. Biotechnol Biofuels 1:8. CrossRefPubMedPubMedCentralGoogle Scholar
  35. Peng L, Shimizu K (2003) Global metabolic regulation analysis for Escherichia coli K12 based on protein expression by 2-dimensional electrophoresis and enzyme activity measurement. Appl Microbiol Biotechnol 61:163–178. CrossRefPubMedGoogle Scholar
  36. Perez-Gallardo RV, Briones L, Diaz-Perez AL, Gutierrez S, Rodriguez-Zavala JS, Campos-Garcia J (2013) Reactive oxygen species production induced by ethanol in Saccharomyces cerevisiae increases because of a dysfunctional mitochondrial iron-sulfur cluster assembly system. FEMS Yeast Res 13(8):804–819. CrossRefPubMedGoogle Scholar
  37. Quinto M, Bender RA (1984) Use of bacteriophage P1 as a vector for Tn5 insertion mutagenesis. Appl Environ Microbiol 47:436–438PubMedPubMedCentralGoogle Scholar
  38. Sanchez LA, Gomez-Gallardo M, Diaz-Perez AL, Cortes-Rojo C, Campos-Garcia J (2019) Iba57p participates in maturation of a [2Fe-2S]-cluster Rieske protein and in formation of supercomplexes III/IV of Saccharomyces cerevisiae electron transport chain. Mitochondrion 44:75–84. CrossRefPubMedGoogle Scholar
  39. Saucedo-Luna J, Castro-Montoya AJ, Martinez-Pacheco MM, Sosa-Aguirre CR, Campos-Garcia J (2011) Efficient chemical and enzymatic saccharification of the lignocellulosic residue from Agave tequilana bagasse to produce ethanol by Pichia caribbica. J Ind Microbiol Biotechnol 38(6):725–732. CrossRefPubMedGoogle Scholar
  40. Schwartz CJ, Giel JL, Patschkowski T, Luther C, Ruzicka FJ, Beinert H, Kiley PJ (2001) IscR, an Fe-S cluster-containing transcription factor, represses expression of Escherichia coli genes encoding Fe-S cluster assembly proteins. Proc Natl Acad Sci USA 98:14895–14900CrossRefGoogle Scholar
  41. Seaton BL, Vickery LE (1994) A gene encoding a DnaK/hsp70 homolog in Escherichia coli. Proc Natl Acad Sci USA 91:2066–2070CrossRefGoogle Scholar
  42. Stanley D, Bandara A, Fraser S, Chambers PJ, Stanley GA (2010) The ethanol stress response and ethanol tolerance of Saccharomyces cerevisiae. J Appl Microbiol 109:13–24. CrossRefPubMedGoogle Scholar
  43. Takahashi Y, Nakamura M (1999) Functional assignment of the ORF2-iscS-iscU-iscA-hscB-hscA-fdx-ORF3 gene cluster involved in the assembly of Fe-S clusters in Escherichia coli. J Biochem 126:917–926CrossRefGoogle Scholar
  44. Teixeira MC, Raposo LR, Mira NP, Lourenco AB, Sa-Correia I (2009) Genome-wide identification of Saccharomyces cerevisiae genes required for maximal tolerance to ethanol. Appl Environ Microbiol 75:5761–5772CrossRefGoogle Scholar
  45. Underwood S, Buszko M, Shanmugam K, Ingram L (2002) Flux through citrate synthase limits the growth of ethanologenic Escherichia coli KO11 during xylose fermentation. Appl Environ Microbiol 68:1071–1081CrossRefGoogle Scholar
  46. Vickery LE, Silberg JJ, Ta DT (1997) Hsc66 and Hsc20, a new heat shock cognate molecular chaperone system from Escherichia coli. Protein Sci 6:1047–1056CrossRefGoogle Scholar
  47. Yang M et al (2014) Pyruvate decarboxylase and alcohol dehydrogenase overexpression in Escherichia coli resulted in high ethanol production and rewired metabolic enzyme networks. World J Microbiol Biotechnol 30:2871–2883. CrossRefGoogle Scholar
  48. Yomano L, York S, Ingram L (1998) Isolation and characterization of ethanol-tolerant mutants of Escherichia coli KO11 for fuel ethanol production. J Ind Microbiol Biotechnol 20:132–138CrossRefGoogle Scholar
  49. Yoshikawa K, Tanaka T, Furusawa C, Nagahisa K, Hirasawa T, Shimizu H (2009) Comprehensive phenotypic analysis for identification of genes affecting growth under ethanol stress in Saccharomyces cerevisiae. FEMS Yeast Res 9(1):32–44. CrossRefPubMedGoogle Scholar
  50. You KM, Rosenfield C-L, Knipple DC (2003) Ethanol tolerance in the yeast Saccharomyces cerevisiae is dependent on cellular oleic acid content. Appl Environ Microbiol 69:1499–1503CrossRefGoogle Scholar
  51. Zheng L, Cash VL, Flint DH, Dean DR (1998) Assembly of iron-sulfur clusters identification of an iscSUA-hscBA-fdx gene cluster from Azotobacter vinelandii. J Biol Chem 273:13264–13272CrossRefGoogle Scholar
  52. Zhou B, Martin GJ, Pamment NB (2008) Increased phenotypic stability and ethanol tolerance of recombinant Escherichia coli KO11 when immobilized in continuous fluidized bed culture. Biotechnol Bioeng 100:627–633CrossRefGoogle Scholar

Copyright information

© Springer Nature B.V. 2019

Authors and Affiliations

  1. 1.Lab. de Biotecnología Microbiana, Instituto de Investigaciones Químico-BiológicasUniversidad Michoacana de San Nicolás de HidalgoMoreliaMexico

Personalised recommendations