Advertisement

An overview on anti-biofilm properties of quercetin against bacterial pathogens

  • Hamed Memariani
  • Mojtaba MemarianiEmail author
  • Abdolmajid Ghasemian
Review

Abstract

Bacterial biofilms are multicellular aggregates enclosed in a self-created biopolymer matrix. Biofilm-producing bacteria have become a great public health problem worldwide because biofilms enable these microorganisms to evade several clearance mechanisms produced by host and synthetic sources. Over the past years, different flavonoids including quercetin have engrossed considerable interest among researchers owing to their potential anti-biofilm properties. To our knowledge, there is no review regarding effects of quercetin towards bacterial biofilms, prompting us to summarize experimental evidence on its anti-biofilm properties. Quercetin inhibits biofilm development by a diverse array of bacterial pathogens such as Enterococcus faecalis, Staphylococcus aureus, Streptococcus mutans, Escherichia coli, and Pseudomonas aeruginosa. Prevention of bacterial adhesion, suppression of quorum-sensing pathways, disruption or alteration of plasma membrane, inhibition of efflux pumps, and blocking nucleic acid synthesis have been documented as major anti-biofilm mechanisms of quercetin. Overall, anti-biofilm activity of quercetin can open up new horizons in a wide range of biomedical areas, from food industry to medicine.

Keywords

Anti-biofilm Quercetin Bacteria Quorum-sensing Adhesion 

Notes

Acknowledgements

Not applicable.

Authors’ contributions

HM and MM wrote the manuscript. AG and MM performed data collection and management. MM and HM contributed to revision of the manuscript.

Compliance with ethical standards

Conflict of interest

The authors declare that they have no conflict of interest.

References

  1. Abachi S, Lee S, Rupasinghe HP (2016) Molecular mechanisms of inhibition of Streptococcus species by phytochemicals. Molecules 21(2):215.  https://doi.org/10.3390/molecules21020215 CrossRefPubMedCentralGoogle Scholar
  2. Adnan M, Sousa AM, Machado I, Pereira MO, Khan S, Morton G, Hadi S (2017) Role of bolA and rpoS genes in biofilm formation and adherence pattern by Escherichia coli K-12 MG1655 on polypropylene, stainless steel, and silicone surfaces. Acta Microbiol Immunol Hung 64(2):179–189.  https://doi.org/10.1556/030.63.2016.018 CrossRefPubMedGoogle Scholar
  3. Ahmed B, Hashmi A, Khan MS, Musarrat J (2018) ROS mediated destruction of cell membrane, growth and biofilms of human bacterial pathogens by stable metallic AgNPs functionalized from bell pepper extract and quercetin. Adv Powder Technol 29(7):1601–1616.  https://doi.org/10.1016/j.apt.2018.03.025 CrossRefGoogle Scholar
  4. Alav I, Sutton JM, Rahman KM (2018) Role of bacterial efflux pumps in biofilm formation. J Antimicrob Chemother 73(8):2003–2020.  https://doi.org/10.1093/jac/dky042 CrossRefPubMedGoogle Scholar
  5. Alguel Y, Meng C, Terán W, Krell T, Ramos JL, Gallegos MT, Zhang X (2007) Crystal structures of multidrug binding protein TtgR in complex with antibiotics and plant antimicrobials. J Mol Biol 369(3):829–840.  https://doi.org/10.1016/j.jmb.2007.03.062 CrossRefPubMedPubMedCentralGoogle Scholar
  6. Al-Karablieh N, Weingart H, Ullrich MS (2009) Genetic exchange of multidrug efflux pumps among two enterobacterial species with distinctive ecological Niches. Int J Mol Sci 10(2):629–645.  https://doi.org/10.3390/ijms10020629 CrossRefPubMedPubMedCentralGoogle Scholar
  7. Amin MU, Khurram M, Khattak B, Khan J (2015) Antibiotic additive and synergistic action of rutin, morin and quercetin against methicillin resistant Staphylococcus aureus. BMC Complement Altern Med 15:59.  https://doi.org/10.1186/s12906-015-0580-0 CrossRefPubMedPubMedCentralGoogle Scholar
  8. Anand David AV, Arulmoli R, Parasuraman S (2016) Overviews of biological importance of quercetin: a bioactive flavonoid. Pharmacogn Rev 10(20):84–89.  https://doi.org/10.4103/0973-7847.194044 CrossRefPubMedPubMedCentralGoogle Scholar
  9. Armbruster CE, Mobley HLT, Pearson MM (2018) Pathogenesis of Proteus mirabilis infection. EcoSal Plus.  https://doi.org/10.1128/ecosalplus.ESP-0009-2017 CrossRefPubMedPubMedCentralGoogle Scholar
  10. Asfour HZ (2018) Anti-quorum sensing natural compounds. J Microsc Ultrastruct 6(1):1–10.  https://doi.org/10.4103/JMAU.JMAU_10_18 CrossRefPubMedPubMedCentralGoogle Scholar
  11. Austin B, Zhang XH (2006) Vibrio harveyi: a significant pathogen of marine vertebrates and invertebrates. Lett Appl Microbiol 43(2):119–124.  https://doi.org/10.1111/j.1472-765X.2006.01989.x CrossRefPubMedGoogle Scholar
  12. Aygül A, Öztürk İ, Çilli FF, Ermertcan Ş (2019) Quercetin inhibits swarming motility and activates biofilm production of Proteus mirabilis possibly by interacting with central regulators, metabolic status or active pump proteins. Phytomedicine 57:65–71.  https://doi.org/10.1016/j.phymed.2018.12.014 CrossRefPubMedGoogle Scholar
  13. Bøhle LA, Færgestad EM, Veiseth-Kent E, Steinmoen H, Nes IF, Eijsink VGH, Mathiesen G (2010) Identification of proteins related to the stress response in Enterococcus faecalis V583 caused by bovine bile. Proteome Sci 8:37.  https://doi.org/10.1186/1477-5956-8-37 CrossRefPubMedPubMedCentralGoogle Scholar
  14. Boles BR, Horswill AR (2008) agr-mediated dispersal of Staphylococcus aureus biofilms. PLoS Pathog 4(4):e1000052.  https://doi.org/10.1371/journal.ppat.1000052 CrossRefPubMedPubMedCentralGoogle Scholar
  15. Bordeleau E, Mazinani SA, Nguyen D, Betancourt F, Yan H (2018) Abrasive treatment of microtiter plates improves the reproducibility of bacterial biofilm assays. RSC Adv 8:32434–32439.  https://doi.org/10.1039/c8ra06352d CrossRefGoogle Scholar
  16. Borges A, Saavedra MJ, Simões M (2012) The activity of ferulic and gallic acids in biofilm prevention and control of pathogenic bacteria. Biofouling 28:755–767.  https://doi.org/10.1080/08927014.2012.706751 CrossRefPubMedGoogle Scholar
  17. Brauge T, Sadovskaya I, Faille C, Benezech T, Maes E, Guerardel Y, Midelet-Bourdin G (2016) Teichoic acid is the major polysaccharide present in the Listeria monocytogenes biofilm matrix. FEMS Microbiol Lett 363(2):fnv229.  https://doi.org/10.1093/femsle/fnv229 CrossRefPubMedGoogle Scholar
  18. Brown TA Jr, Ahn SJ, Frank RN, Chen YY, Lemos JA, Burne RA (2005) A hypothetical protein of Streptococcus mutans is critical for biofilm formation. Infect Immun 73(5):3147–3151.  https://doi.org/10.1128/IAI.73.5.3147-3151.2005 CrossRefPubMedPubMedCentralGoogle Scholar
  19. Chao Y, Marks LR, Pettigrew MM, Hakansson AP (2015) Streptococcus pneumoniae biofilm formation and dispersion during colonization and disease. Front Cell Infect Microbiol 4:194.  https://doi.org/10.3389/fcimb.2014.00194 CrossRefPubMedPubMedCentralGoogle Scholar
  20. Ch’ng JH, Chong KKL, Lam LN, Wong JJ, Kline KA (2019) Biofilm-associated infection by enterococci. Nat Rev Microbiol 17(2):82–94.  https://doi.org/10.1038/s41579-018-0107-z CrossRefPubMedGoogle Scholar
  21. Cho HS, Lee JH, Cho MH, Lee J (2014) Red wines and flavonoids diminish Staphylococcus aureus virulence with anti-biofilm and anti-hemolytic activities. Biofouling 31(1):1–11.  https://doi.org/10.1080/08927014.2014.991319 CrossRefGoogle Scholar
  22. da Costa Júnior SD, de Oliveira Santos JV, de Almeida Campos LA, Pereira MA, Santos Magalhães NS, Ferro Cavalcanti IS (2018) Antibacterial and antibiofilm activities of quercetin against clinical isolates of Staphyloccocus aureus and Staphylococcus saprophyticus with resistance profile. Int J Env Agr Biotech 3:1948–1958.  https://doi.org/10.22161/ijeab/3.5.50 CrossRefGoogle Scholar
  23. Dani S, Prabhu A, Chaitra KR, Desai NC, Patil SR, Rajeev R (2016) Assessment of Streptococcus mutans in healthy versus gingivitis and chronic periodontitis: a clinico-microbiological study. Contemp Clin Dent 7:529–534.  https://doi.org/10.4103/0976-237X.194114 CrossRefPubMedPubMedCentralGoogle Scholar
  24. Earl AM, Losick R, Kolter R (2008) Ecology and genomics of Bacillus subtilis. Trends Microbiol 16(6):269–275.  https://doi.org/10.1016/j.tim.2008.03.004 CrossRefPubMedPubMedCentralGoogle Scholar
  25. Flemming HC, Wingender J, Szewzyk U, Steinberg P, Rice SA, Kjelleberg S (2016) Biofilms: an emergent form of bacterial life. Nat Rev Microbiol 14(9):563–575.  https://doi.org/10.1038/nrmicro.2016.94 CrossRefGoogle Scholar
  26. Gennaris A, Collet JF (2013) The ‘captain of the men of death’, Streptococcus pneumoniae, fights oxidative stress outside the ‘city wall’. EMBO Mol Med 5(12):1798–1800.  https://doi.org/10.1002/emmm.201303482 CrossRefPubMedPubMedCentralGoogle Scholar
  27. González Barrios AF, Zuo R, Hashimoto Y, Yang L, Bentley WE, Wood TK (2006) Autoinducer 2 controls biofilm formation in Escherichia coli through a novel motility quorum-sensing regulator (MqsR, B3022). J Bacteriol 188(1):305–316.  https://doi.org/10.1128/JB.188.1.305-316.2006 CrossRefPubMedPubMedCentralGoogle Scholar
  28. Górniak I, Bartoszewski R, Króliczewski J (2019) Comprehensive review of antimicrobial activities of plant flavonoids. Phytochem Rev 18(1):241–272.  https://doi.org/10.1007/s11101-018-9591-z CrossRefGoogle Scholar
  29. Hasan S, Singh K, Danisuddin M, Verma PK, Khan AU (2014) Inhibition of major virulence pathways of Streptococcus mutans by quercitrin and deoxynojirimycin: a synergistic approach of infection control. PLoS ONE 9(3):e91736.  https://doi.org/10.1371/journal.pone.0091736 CrossRefPubMedPubMedCentralGoogle Scholar
  30. Hussain MS, Fareed S, Ansari S, Rahman MA, Ahmad IZ, Saeed M (2012) Current approaches toward production of secondary plant metabolites. J Pharm Bioallied Sci 4(1):10–20.  https://doi.org/10.4103/0975-7406.92725 CrossRefPubMedPubMedCentralGoogle Scholar
  31. Ito A, May T, Kawata K, Okabe S (2008) Significance of rpoS during maturation of Escherichia coli biofilms. Biotechnol Bioeng 99(6):1462–1471.  https://doi.org/10.1002/bit.21695 CrossRefPubMedGoogle Scholar
  32. Jimenez JC, Federle MJ (2014) Quorum sensing in group A Streptococcus. Front Cell Infect Microbiol 4:127.  https://doi.org/10.3389/fcimb.2014.00127 CrossRefPubMedPubMedCentralGoogle Scholar
  33. Kane TL, Carothers KE, Lee SW (2018) Virulence factor targeting of the bacterial pathogen Staphylococcus aureus for vaccine and therapeutics. Curr Drug Targets 19(2):111–127.  https://doi.org/10.2174/1389450117666161128123536 CrossRefPubMedPubMedCentralGoogle Scholar
  34. Kang SS, Kim JG, Lee TH, Oh KB (2006) Flavonols inhibit sortases and sortase-mediated Staphylococcus aureus clumping to fibrinogen. Biol Pharm Bull 29(8):1751–1752.  https://doi.org/10.1248/bpb.29.1751 CrossRefPubMedGoogle Scholar
  35. Kaur G, Rajesh S, Princy SA (2015) Plausible drug targets in the Streptococcus mutans quorum sensing pathways to combat dental biofilms and associated risks. Indian J Microbiol 55(4):349–356.  https://doi.org/10.1007/s12088-015-0534-8 CrossRefPubMedPubMedCentralGoogle Scholar
  36. Khan T, Sankhe K, Suvarna V, Sherje A, Patel K, Dravyakar B (2018) DNA gyrase inhibitors: progress and synthesis of potent compounds as antibacterial agents. Biomed Pharmacother 103:923–938.  https://doi.org/10.1016/j.biopha.2018.04.021 CrossRefPubMedGoogle Scholar
  37. Kim MK, Lee TG, Jung M, Park KH, Chong Y (2018) In vitro synergism and anti-biofilm activity of quercetin-pivaloxymethyl conjugate against Staphylococcus aureus and Enterococcus species. Chem Pharm Bull (Tokyo) 66:1019–1022.  https://doi.org/10.1248/cpb.c18-00380 CrossRefGoogle Scholar
  38. Koo H, Allan RN, Howlin RP, Stoodley P, Hall-Stoodley L (2017) Targeting microbial biofilms: current and prospective therapeutic strategies. Nat Rev Microbiol 15(12):740–755.  https://doi.org/10.1038/nrmicro.2017.99 CrossRefPubMedPubMedCentralGoogle Scholar
  39. Lee Y (2017) Biofilm formation and antimicrobial resistance in Enterococcus. Infect Chemother 49(3):236–237.  https://doi.org/10.3947/ic.2017.49.3.236 CrossRefPubMedPubMedCentralGoogle Scholar
  40. Lee KA, Moon SH, Kim KT, Mendonca AF, Paik HD (2010) Antimicrobial effects of various flavonoids on Escherichia coli O157:H7 cell growth and lipopolysaccharide production. Food Sci Biotechnol 19(1):257–261.  https://doi.org/10.1007/s10068-010-0037-7 CrossRefGoogle Scholar
  41. Lee JH, Park JH, Cho HS, Joo SW, Cho MH, Lee J (2013) Anti-biofilm activities of quercetin and tannic acid against Staphylococcus aureus. Biofouling 29:491–499.  https://doi.org/10.1080/08927014.2013.788692 CrossRefPubMedGoogle Scholar
  42. Li Y, Yao J, Han C, Yang J, Chaudhry MT, Wang S, Liu H, Yin Y (2016) Quercetin, Inflammation and Immunity. Nutrients 8(3):167.  https://doi.org/10.3390/nu8030167 CrossRefPubMedPubMedCentralGoogle Scholar
  43. Liu B, Chen F, Bi C, Wang L, Zhong X, Cai H, Deng X, Niu X, Wang D (2015) Quercitrin, an inhibitor of Sortase A, interferes with the adhesion of Staphylococcal aureus. Molecules 20(4):6533–6543.  https://doi.org/10.3390/molecules20046533 CrossRefPubMedPubMedCentralGoogle Scholar
  44. López D, Vlamakis H, Kolter R (2010) Biofilms. Cold Spring Harb Perspect Biol 2(7):a000398.  https://doi.org/10.1101/cshperspect.a000398 CrossRefPubMedPubMedCentralGoogle Scholar
  45. Lu L, Hu W, Tian Z, Yuan D, Yi G, Zhou Y, Cheng Q, Zhu J, Li M (2019) Developing natural products as potential anti-biofilm agents. Chin Med 14:11.  https://doi.org/10.1186/s13020-019-0232-2 CrossRefPubMedPubMedCentralGoogle Scholar
  46. Malhotra R, Dhawan B, Garg B, Shankar V, Nag TC (2019) A comparison of bacterial adhesion and biofilm formation on commonly used orthopaedic metal implant materials: an in vitro study. Indian J Orthop 53(1):148–153.  https://doi.org/10.4103/ortho.IJOrtho_66_18 CrossRefPubMedPubMedCentralGoogle Scholar
  47. Markowska K, Grudniak AM, Wolska KI (2013) Silver nanoparticles as an alternative strategy against bacterial biofilms. Acta Biochim Pol 60(4):523–530PubMedGoogle Scholar
  48. Memariani M, Peerayeh SN, Mostafavi SKS, Salehi TZ (2014) Detection of class 1 and 2 integrons among enteropathogenic Escherichia coli isolates. Arch of Pediatr Infect Dis 2(4):e16372.  https://doi.org/10.5812/pedinfect.16372 CrossRefGoogle Scholar
  49. Memariani H, Shahbazzadeh D, Sabatier JM, Memariani M, Karbalaeimahdi A, Bagheri KP (2016) Mechanism of action and in vitro activity of short hybrid antimicrobial peptide PV3 against Pseudomonas aeruginosa. Biochem Biophys Res Commun 479(1):103–108.  https://doi.org/10.1016/j.bbrc.2016.09.045 CrossRefPubMedGoogle Scholar
  50. Memariani H, Memariani M, Pourmand MR (2018) Venom-derived peptide Mastoparan-1 eradicates planktonic and biofilm-embedded methicillin-resistant Staphylococcus aureus isolates. Microb Pathog 119:72–80.  https://doi.org/10.1016/j.micpath.2018.04.008 CrossRefPubMedGoogle Scholar
  51. Memariani H, Memariani M, Shahidi-Dadras M, Nasiri S, Akhavan MM, Moravvej H (2019a) Melittin: from honeybees to superbugs. Appl Microbiol Biotechnol 103(8):3265–3276.  https://doi.org/10.1007/s00253-019-09698-y CrossRefPubMedGoogle Scholar
  52. Memariani M, Memariani H, Shahidi-Dadras M, Tehranchinia Z, Ghalamkarpour F, Moravvej H (2019b) Contemporary systematic review and meta-analysis of exfoliative toxin-producing Staphylococcus aureus strains isolated from patients in Iran. Rev Med Microbiol.  https://doi.org/10.1097/MRM.0000000000000177 CrossRefGoogle Scholar
  53. Miller WR, Munita JM, Arias CA (2015) Mechanisms of antibiotic resistance in enterococci. Expert Rev Anti Infect Ther 12(10):1221–1236.  https://doi.org/10.1586/14787210.2014.956092 CrossRefGoogle Scholar
  54. Moormeier DE, Bayles KW (2017) Staphylococcus aureus biofilm: a complex developmental organism. Mol Microbiol 104(3):365–376.  https://doi.org/10.1111/mmi.13634 CrossRefPubMedPubMedCentralGoogle Scholar
  55. Moradali MF, Ghods S, Rehm BH (2017) Pseudomonas aeruginosa lifestyle: a paradigm for adaptation, survival, and persistence. Front Cell Infect Microbiol 7:39.  https://doi.org/10.3389/fcimb.2017.00039 CrossRefPubMedPubMedCentralGoogle Scholar
  56. Nabavi SM, Silva AS (2019) Nonvitamin and nonmineral nutritional supplements, 1st edn. Academic Press, Cambridge.  https://doi.org/10.1016/C2016-0-03546-5 CrossRefGoogle Scholar
  57. Nakao R, Ramstedt M, Wai SN, Uhlin BE (2012) Enhanced biofilm formation by Escherichia coli LPS mutants defective in Hep biosynthesis. PLoS ONE 7(12):e51241.  https://doi.org/10.1371/journal.pone.0051241 CrossRefPubMedPubMedCentralGoogle Scholar
  58. Naves P, del Prado G, Huelves L, Gracia M, Ruiz V, Blanco J, Rodríguez-Cerrato V, Ponte MC, Soriano F (2008) Measurement of biofilm formation by clinical isolates of Escherichia coli is method-dependent. J Appl Microbiol 105(2):585–590.  https://doi.org/10.1111/j.1365-2672.2008.03791.x CrossRefPubMedGoogle Scholar
  59. Nishimura T, Hattori K, Inoue A, Ishii T, Yumoto T, Tsukahara K, Nakao A, Ishihara S, Nakayama S (2017) Bacteremia or pseudobacteremia? Review of pseudomonas fluorescens infections. World J Emerg Med 8(2):151–154.  https://doi.org/10.5847/wjem.j.1920-8642.2017.02.013 CrossRefPubMedPubMedCentralGoogle Scholar
  60. O’Gara JP (2007) ica and beyond: biofilm mechanisms and regulation in Staphylococcus epidermidis and Staphylococcus aureus. FEMS Microbiol Lett 270:179–188.  https://doi.org/10.1111/j.1574-6968.2007.00688.x CrossRefPubMedGoogle Scholar
  61. Oggioni MR, Trappetti C, Kadioglu A, Cassone M, Iannelli F, Ricci S, Andrew PW, Pozzi G (2006) Switch from planktonic to sessile life: a major event in pneumococcal pathogenesis. Mol Microbiol 61:1196–1210.  https://doi.org/10.1111/j.1365-2958.2006.05310.x CrossRefPubMedPubMedCentralGoogle Scholar
  62. Ohemeng KA, Schwender CF, Barrett JF (1993) DNA gyrase inhibitory and antibacterial activity of some flavones(1). Bioorg Med Chem Lett 3(2):225–230.  https://doi.org/10.1016/S0960-894X(01)80881-7 CrossRefGoogle Scholar
  63. Ohene-Agyei T, Mowla R, Rahman T, Venter H (2014) Phytochemicals increase the antibacterial activity of antibiotics by acting on a drug efflux pump. Microbiologyopen 3(6):885–896.  https://doi.org/10.1002/mbo3.212 CrossRefPubMedPubMedCentralGoogle Scholar
  64. Oluyombo O, Penfold CN, Diggle SP (2019) Competition in biofilms between cystic fibrosis isolates of Pseudomonas aeruginosa is shaped by R-Pyocins. MBio 10(1):e01828-18.  https://doi.org/10.1128/mBio.01828-18 CrossRefPubMedPubMedCentralGoogle Scholar
  65. Ouyang J, Sun F, Feng W, Sun Y, Qiu X, Xiong L, Liu Y, Chen Y (2016) Quercetin is an effective inhibitor of quorum sensing, biofilm formation and virulence factors in Pseudomonas aeruginosa. J Appl Microbiol 120(4):966–974.  https://doi.org/10.1111/jam.13073 CrossRefPubMedGoogle Scholar
  66. Panche AN, Diwan AD, Chandra SR (2016) Flavonoids: an overview. J Nutr Sci 5:e47.  https://doi.org/10.1017/jns.2016.41 CrossRefPubMedPubMedCentralGoogle Scholar
  67. Parker D, Soong G, Planet P, Brower J, Ratner AJ, Prince A (2009) The NanA neuraminidase of Streptococcus pneumoniae is involved in biofilm formation. Infect Immun 77(9):3722–3730.  https://doi.org/10.1128/IAI.00228-09 CrossRefPubMedPubMedCentralGoogle Scholar
  68. Plaper A, Golob M, Hafner I, Oblak M, Solmajer T, Jerala R (2003) Characterization of quercetin binding site on DNA gyrase. Biochem Biophys Res Commun 306(2):530–536.  https://doi.org/10.1016/s0006-291x(03)01006-4 CrossRefPubMedGoogle Scholar
  69. Qayyum S, Sharma D, Bisht D, Khan AU (2019) Identification of factors involved in Enterococcus faecalis biofilm under quercetin stress. Microb Pathog 126:205–211.  https://doi.org/10.1016/j.micpath.2018.11.013 CrossRefPubMedGoogle Scholar
  70. Qiu W, Zheng X, Wei Y, Zhou X, Zhang K, Wang S, Cheng L, Li Y, Ren B, Xu X, Li Y, Li M (2016) d-Alanine metabolism is essential for growth and biofilm formation of Streptococcus mutans. Mol Oral Microbiol 31(5):435–444.  https://doi.org/10.1111/omi.12146 CrossRefPubMedGoogle Scholar
  71. Raie DS, Mhatre E, El-Desouki DS, Labena A, El-Ghannam G, Farahat LA, Youssef T, Fritzsche W, Kovács ÁT (2018) Effect of novel quercetin titanium dioxide-decorated multi-walled carbon nanotubes nanocomposite on Bacillus subtilis biofilm development. Materials (Basel) 11:157.  https://doi.org/10.3390/ma11010157 CrossRefGoogle Scholar
  72. Rodríguez-López P, Rodríguez-Herrera JJ, Vázquez-Sánchez D, López Cabo M (2018) Current knowledge on Listeria monocytogenes biofilms in food-related environments: incidence, resistance to biocides, ecology and biocontrol. Foods 7(6):E85.  https://doi.org/10.3390/foods7060085 CrossRefPubMedGoogle Scholar
  73. Ronald A (2003) The etiology of urinary tract infection: traditional and emerging pathogens. Dis Mon 49(2):71–82.  https://doi.org/10.1067/mda.2003.8 CrossRefPubMedGoogle Scholar
  74. Roy R, Tiwari M, Donelli G, Tiwari V (2018) Strategies for combating bacterial biofilms: a focus on anti-biofilm agents and their mechanisms of action. Virulence 9(1):522–554.  https://doi.org/10.1080/21505594.2017.1313372 CrossRefPubMedGoogle Scholar
  75. Sadekuzzaman M, Yang S, Mizan MFR, Ha SD (2015) Current and recent advanced strategies for combating biofilms. Compr Rev Food Sci Food Saf 14:491–509.  https://doi.org/10.1111/1541-4337.12144 CrossRefGoogle Scholar
  76. Sajeevan SE, Chatterjee M, Paul V, Baranwal G, Kumar VA, Bose C, Banerji A, Nair BG, Prasanth BP, Biswas R (2018) Impregnation of catheters with anacardic acid from cashew nut shell prevents Staphylococcus aureus biofilm development. J Appl Microbiol 125(5):1286–1295.  https://doi.org/10.1111/jam.14040 CrossRefPubMedGoogle Scholar
  77. Samoilova Z, Muzyka N, Lepekhina E, Oktyabrsky O, Smirnova G (2014) Medicinal plant extracts can variously modify biofilm formation in Escherichia coli. Antonie Van Leeuwenhoek 105(4):709–722.  https://doi.org/10.1007/s10482-014-0126-3 CrossRefPubMedGoogle Scholar
  78. Sanver D, Murray BS, Sadeghpour A, Rappolt M, Nelson AL (2016) Experimental modeling of flavonoid-biomembrane interactions. Langmuir 32(49):13234–13243.  https://doi.org/10.1021/acs.langmuir.6b02219 CrossRefPubMedGoogle Scholar
  79. Shak JR, Ludewick HP, Howery KE, Sakai F, Yi H, Harvey RM, Paton JC, Klugman KP, Vidal JE (2013) Novel role for the Streptococcus pneumoniae toxin pneumolysin in the assembly of biofilms. MBio 4(5):e00655-13.  https://doi.org/10.1128/mBio.00655-13 CrossRefPubMedPubMedCentralGoogle Scholar
  80. Shreeram DD, Panmanee W, McDaniel CT, Daniel S, Schaefer DW, Hassett DJ (2018) Effect of impaired twitching motility and biofilm dispersion on performance of Pseudomonas aeruginosa–powered microbial fuel cells. J Ind Microbiol Biotechnol 45(2):103–109.  https://doi.org/10.1007/s10295-017-1995-z CrossRefPubMedGoogle Scholar
  81. Shriram V, Khare T, Bhagwat R, Shukla R, Kumar V (2018) Inhibiting bacterial drug efflux pumps via phyto-therapeutics to combat threatening antimicrobial resistance. Front Microbiol 9:2990.  https://doi.org/10.3389/fmicb.2018.02990 CrossRefPubMedPubMedCentralGoogle Scholar
  82. Singh SP, Konwarh R, Konwar BK, Karak N (2013) Molecular docking studies on analogues of quercetin with d-alanine:d-alanine ligase of Helicobacter pylori. Med Chem Res 22(5):2139–2150.  https://doi.org/10.1007/s00044-012-0207-7 CrossRefGoogle Scholar
  83. Smith AJ, Oertle J, Warren D, Prato D (2016) Quercetin: a promising flavonoid with a dynamic ability to treat various diseases, infections, and cancers. J Can Ther 7:83–95.  https://doi.org/10.4236/jct.2016.72010 CrossRefGoogle Scholar
  84. Suriyanarayanan B, Sarojini Santhosh R (2015) Docking analysis insights quercetin can be a non-antibiotic adjuvant by inhibiting Mmr drug efflux pump in Mycobacterium sp. and its homologue EmrE in Escherichia coli. J Biomol Struct Dyn 33(8):1819–1834.  https://doi.org/10.1080/07391102.2014.974211 CrossRefPubMedGoogle Scholar
  85. Suriyanarayanan B, Shanmugam K, Santhosh RS (2013) Synthetic quercetin inhibits mycobacterial growth possibly by interacting with DNA gyrase. Rom Biotechnol Lett 18(5):8587–8593Google Scholar
  86. Symeonidis A, Marangos M (2012) Iron and microbial growth. In: Priti DR (ed) Insight and control of infectious disease in global scenario. InTechOpen, LondonGoogle Scholar
  87. Tan L, Li SR, Jiang B, Hu XM, Li S (2018) Therapeutic targeting of the Staphylococcus aureus accessory gene regulator (agr) system. Front Microbiol 9:55.  https://doi.org/10.3389/fmicb.2018.00055 CrossRefPubMedPubMedCentralGoogle Scholar
  88. Trappetti C, Kadioglu A, Carter M, Hayre J, Iannelli F, Pozzi G, Andrew PW, Oggioni MR (2009) Sialic acid: a preventable signal for pneumococcal biofilm formation, colonization, and invasion of the host. J Infect Dis 199:1497–1505.  https://doi.org/10.1086/598483 CrossRefPubMedGoogle Scholar
  89. Vanaraj S, Keerthana BB, Preethi K (2017) Biosynthesis, characterization of silver nanoparticles using quercetin from Clitoria ternatea L to enhance toxicity against bacterial biofilm. J Inorg Organomet Polym Mater 27(5):1412–1422.  https://doi.org/10.1007/s10904-017-0595-8 CrossRefGoogle Scholar
  90. Vazquez-Armenta FJ, Bernal-Mercado AT, Tapia-Rodriguez MR, Gonzalez-Aguilar GA, Lopez-Zavala AA, Martinez-Tellez MA, Hernandez-Onate MA, Ayala-Zavala JF (2018) Quercetin reduces adhesion and inhibits biofilm development by Listeria monocytogenes by reducing the amount of extracellular proteins. Food Control 90:266–273.  https://doi.org/10.1016/j.foodcont.2018.02.041 CrossRefGoogle Scholar
  91. Vikram A, Jayaprakasha GK, Jesudhasan PR, Pillai SD, Patil BS (2010) Suppression of bacterial cell-cell signalling, biofilm formation and type III secretion system by citrus flavonoids. J Appl Microbiol 109(2):515–527.  https://doi.org/10.1111/j.1365-2672.2010.04677.x CrossRefPubMedGoogle Scholar
  92. Vipin C, Mujeeburahiman M, Ashwini P, Arun AB, Rekha PD (2019a) Anti-biofilm and cytoprotective activities of quercetin against Pseudomonas aeruginosa isolates. Lett Appl Microbiol 68(5):464–471.  https://doi.org/10.1111/lam.13129 CrossRefPubMedGoogle Scholar
  93. Vipin C, Mujeeburahiman M, Saptami K, Arun AB, Rekha PD (2019b) Synergistic interactions of quercetin with antibiotics against biofilm associated clinical isolates of Pseudomonas aeruginosa in vitro. bioRxiv.  https://doi.org/10.1101/601336 CrossRefGoogle Scholar
  94. Wang J, Song M, Pan J, Shen X, Liu W, Zhang X, Li H, Deng X (2018a) Quercetin impairs Streptococcus pneumoniae biofilm formation by inhibiting sortase A activity. J Cell Mol Med 22(12):6228–6237.  https://doi.org/10.1111/jcmm.1391010.1111/jcmm.13910 CrossRefPubMedPubMedCentralGoogle Scholar
  95. Wang S, Yao J, Zhou B, Yang J, Chaudry MT, Wang M, Xiao F, Li Y, Yin W (2018b) Bacteriostatic effect of quercetin as an antibiotic alternative in vivo and its antibacterial mechanism in vitro. J Food Prot 81(1):68–78.  https://doi.org/10.4315/0362-028X.JFP-17-214 CrossRefPubMedGoogle Scholar
  96. Waters V, Smyth A (2015) Cystic fibrosis microbiology: advances in antimicrobial therapy. J Cyst Fibros 14(5):551–560.  https://doi.org/10.1016/j.jcf.2015.02.005 CrossRefPubMedGoogle Scholar
  97. Wen ZT, Baker HV, Burne RA (2006) Influence of BrpA on critical virulence attributes of Streptococcus mutans. J Bacteriol 188(8):2983–2992.  https://doi.org/10.1128/JB.188.8.2983-2992.2006 CrossRefPubMedPubMedCentralGoogle Scholar
  98. Wu D, Kong Y, Han C, Chen J, Hu L, Jiang H, Shen X (2008) D-Alanine:D-alanine ligase as a new target for the flavonoids quercetin and apigenin. Int J Antimicrob Agents 32(5):421–426.  https://doi.org/10.1016/j.ijantimicag.2008.06.010 CrossRefPubMedGoogle Scholar
  99. Wu T, He M, Zang X, Zhou Y, Qiu T, Pan S, Xu X (2013) A structure–activity relationship study of flavonoids as inhibitors of E. coli by membrane interaction effect. Biochim Biophys Acta 1828(11):2751–2756.  https://doi.org/10.1016/j.bbamem.2013.07.029 CrossRefPubMedGoogle Scholar
  100. Wu H, Moser C, Wang HZ, Høiby N, Song Z (2015) Strategies for combating bacterial biofilm infections. Int J Oral Sci 7(1):1–7.  https://doi.org/10.1038/ijos.2014.65 CrossRefPubMedGoogle Scholar
  101. Yang H, Li K, Yan H, Liu S, Wang Y, Huang C (2017) High-performance therapeutic quercetin-doped adhesive for adhesive–dentin interfaces. Sci Rep 7:8189.  https://doi.org/10.1038/s41598-017-08633-3 CrossRefPubMedPubMedCentralGoogle Scholar
  102. Yu L, Shang F, Chen X, Ni J, Yu L, Zhang M, Sun D, Xue T (2018) The anti-biofilm effect of silver-nanoparticle-decorated quercetin nanoparticles on a multi-drug resistant Escherichia coli strain isolated from a dairy cow with mastitis. PeerJ 6:e5711.  https://doi.org/10.7717/peerj.5711 CrossRefPubMedPubMedCentralGoogle Scholar
  103. Zeng Y, Nikitkova A, Abdelsalam H, Li J, Xiao J (2019) Activity of quercetin and kaemferol against Streptococcus mutans biofilm. Arch Oral Biol 98:9–16.  https://doi.org/10.1016/j.archoralbio.2018.11.005 CrossRefPubMedGoogle Scholar

Copyright information

© Springer Nature B.V. 2019

Authors and Affiliations

  1. 1.Skin Research CenterShahid Beheshti University of Medical SciencesTehranIran
  2. 2.Department of MicrobiologyFasa University of Medical SciencesFasaIran

Personalised recommendations