Skip to main content
Log in

Comprehensive profiling of codon usage signatures and codon context variations in the genus Ustilago

  • Original Article
  • Published:
World Journal of Microbiology and Biotechnology Aims and scope Submit manuscript

Abstract

The fungal genus Ustilago consists of intimidating pathogens associated with disease manifestations in plants of agricultural importance and gravity. Rapid progress of genome sequencing has opened the floodgates for biological research. Availability of Ustilago genomes provides a scope to explore complex codon and amino acid usage patterns in the genus. An extensive scrutiny of the factors underlying the complex modalities of codon and amino acid usage in Ustilago has been executed in the present analysis. Multivariate statistical analysis revealed a dominant effect of natural selection pressure, aimed at translational accuracy, to be operative on the codon usage behavior. Subtle impact of GC compositional constraint was also evident on the codon usage patterns. Gene expressivity was inferred to be the most crucial determinant governing observed codon usage variations. Amino acid usage patterns were found to be significantly governed by aromatic and hydrophobic characters of the encoded proteins. GC content and length of protein coding sequences also had considerable influence on the amino acid usage signatures. Extensive analysis of codon context variations revealed that UpA dinucleotides were strictly avoided at the codon–codon junctions (cP3–cA1) which might be attributed to reduce the risk of nonsense mutations and subsequently, improve translational finesse. Identification of the optimal codons, employed preferentially among the genes with high expressivity, and estimation of preferred and avoided codon pairs in Ustilago promises to be useful pertaining to mutational experiments at the codonic level, targeted to thwart the growth of Ustilago and combat associated pathogenesis.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Al-Saif M, Khabar KS (2012) UU/UA dinucleotide frequency reduction in coding regions results in increased mRNA stability and protein expression. Mol Ther 20:954–959

    CAS  PubMed  PubMed Central  Google Scholar 

  • Andersson SG, Zomorodipour A, Andersson JO, Sicheritz-Pontén T, Alsmark UC, Podowski RM et al (1998) The genome sequence of Rickettsia prowazekii and the origin of mitochondria. Nature 396:133–140

    CAS  PubMed  Google Scholar 

  • Angellotti MC, Bhuiyan SB, Chen G, Wan XF (2007) CodonO: codon usage bias analysis within and across genomes. Nucleic Acids Res 35:W132–W136

    PubMed  PubMed Central  Google Scholar 

  • Austin R, Provart NJ, Sacadura NT, Nugent KG, Babu M, Saville BJ (2004) A comparative genomic analysis of ESTs from Ustilago maydis. Funct Integr Genomics 4:207–218

    PubMed  Google Scholar 

  • Baeza M, Alcaíno J, Barahona S, Sepúlveda D, Cifuentes V (2015) Codon usage and codon context bias in Xanthophyllomyces dendrorhous. BMC Genomics 16:293

    PubMed  PubMed Central  Google Scholar 

  • Behura SK, Severson DW (2012) Comparative analysis of codon usage bias and codon context patterns between dipteran and hymenopteran sequenced genomes. PLoS ONE 7:e43111

    CAS  PubMed  PubMed Central  Google Scholar 

  • Benevenuto J, Teixeira-Silva NS, Kuramae EE, Croll D, Monteiro-Vitorello CB (2018) Comparative genomics of smut pathogens: insights from orphans and positively selected genes into host specialization. Front Microbiol 9:660

    PubMed  PubMed Central  Google Scholar 

  • Beutler E, Gelbart T, Han JH, Koziol JA, Beutler B (1989) Evolution of the genome and the genetic code: selection at the dinucleotide level by methylation and polyribonucleotide cleavage. Proc Natl Acad Sci USA 86:192–196

    CAS  PubMed  Google Scholar 

  • Billmyre RB, Calo S, Feretzaki M, Wang X, Heitman J (2013) RNAi function, diversity, and loss in the fungal kingdom. Chromosome Res 21:561–572

    CAS  PubMed  Google Scholar 

  • Buchan JR, Aucott LS, Stansfield I (2006) tRNA properties help shape codon pair preferences in open reading frames. Nucleic Acids Res 34:1015–1027

    CAS  PubMed  PubMed Central  Google Scholar 

  • Cannarozzi G, Schraudolph NN, Faty M, von Rohr P, Friberg MT, Roth AC et al (2010) A role for codon order in translation dynamics. Cell 141:355–367

    PubMed  Google Scholar 

  • Chauhan N, Vidyarthi AS, Poddar R (2011) Comparative multivariate analysis of codon and amino acid usage in three Leishmania genomes. Genomics Proteomics Bioinform 9:218–228

    Google Scholar 

  • Chen Y, Chen YF (2014) Analysis of synonymous codon usage patterns in duck hepatitis A virus: a comparison on the roles of mutual pressure and natural selection. Virusdisease 25:285–293

    PubMed  PubMed Central  Google Scholar 

  • Chen SL, Lee W, Hottes AK, Shapiro L, McAdams HH (2004) Codon usage between genomes is constrained by genome-wide mutational processes. Proc Natl Acad Sci USA 101:3480–3485

    CAS  PubMed  Google Scholar 

  • Comeron JM, Aguade M (1998) An evaluation of measures of synonymous codon usage bias. J Mol Evol 47:268–274

    CAS  PubMed  Google Scholar 

  • de Miranda AB, Alvarez-Valin F, Jabbari K, Degrave WM, Bernardi G (2000) Gene expression, amino acid conservation, and hydrophobicity are the main factors shaping codon preferences in Mycobacterium tuberculosis and Mycobacterium leprae. J Mol Evol 50:45–55

    PubMed  Google Scholar 

  • dos Reis M, Wernisch L, Savva R (2003) Unexpected correlations between gene expression and codon usage bias from microarray data for the whole Escherichia coli K-12 genome. Nucleic Acids Res 31:6976–6985

    PubMed  PubMed Central  Google Scholar 

  • Duan X, Yi S, Guo X, Wang W (2015) A comprehensive analysis of codon usage patterns in blunt snout bream (Megalobrama amblycephala) based on RNA-Seq data. Int J Mol Sci 16:11996–12013

    CAS  PubMed  PubMed Central  Google Scholar 

  • Dufton MJ (1997) Genetic code synonym quotas and amino acid complexity: cutting the cost of proteins? J Theor Biol 187:165–173

    CAS  PubMed  Google Scholar 

  • Duret L (2000) tRNA gene number and codon usage in the C. elegans genome are co-adapted for optimal translation of highly expressed genes. Trends Genet 16:287–289

    CAS  PubMed  Google Scholar 

  • Duret L, Mouchiroud D (1999) Expression pattern and surprisingly, gene length shape codon usage in Caenorhabditis, Drosophila, and Arabidopsis. Proc Natl Acad Sci USA 96:4482–4487

    CAS  PubMed  Google Scholar 

  • Dutheil JY, Mannhaupt G, Schweizer G, Sieber MKC, Münsterkötter M, Güldener U et al (2016) A tale of genome compartmentalization: the evolution of virulence clusters in smut fungi. Genome Biol Evol 8:681–704

    PubMed  PubMed Central  Google Scholar 

  • Fedorov A, Saxonov S, Gilbert W (2002) Regularities of context-dependent codon bias in eukaryotic genes. Nucleic Acids Res 30:1192–1197

    CAS  PubMed  PubMed Central  Google Scholar 

  • Feng C, Xu CJ, Wang Y, Liu WL, Yin XR, Li X et al (2013) Codon usage patterns in Chinese bayberry (Myrica rubra) based on RNA-Seq data. BMC Genomics 14:732

    CAS  PubMed  PubMed Central  Google Scholar 

  • Fredrick K, Ibba M (2010) How the sequence of a gene can tune its translation. Cell 141:227–229

    CAS  PubMed  PubMed Central  Google Scholar 

  • Grantham R, Gautier C, Gouy M, Jacobzone M, Mercier R (1981) Codon catalog usage is a genome strategy modulated for gene expressivity. Nucleic Acids Res 9:r43–r74

    CAS  PubMed  PubMed Central  Google Scholar 

  • Greenacre MJ (1984) Theory and applications of correspondence analysis. Academic Press, London

    Google Scholar 

  • Gu W, Zhou T, Ma J, Sun X, Lu Z (2004) The relationship between synonymous codon usage and protein structure in Escherichia coli and Homo sapiens. Biosystems 73:89–97

    CAS  PubMed  Google Scholar 

  • Guo FB, Ye YN, Zhao HL, Lin D, Wei W (2012) Universal pattern and diverse strengths of successive synonymous codon bias in three domains of life, particularly among prokaryotic genomes. DNA Res 19:477–485

    CAS  PubMed  PubMed Central  Google Scholar 

  • Gutman GA, Hatfield GW (1989) Nonrandom utilization of codon pairs in Escherichia coli. Proc Natl Acad Sci USA 86:3699–3703

    CAS  PubMed  Google Scholar 

  • He B, Dong H, Jiang C, Cao F, Tao S, Xu LA (2016) Analysis of codon usage patterns in Ginkgo biloba reveals codon usage tendency from A/U-ending to G/C-ending. Sci Rep 6:35927

    CAS  PubMed  PubMed Central  Google Scholar 

  • Hershberg R, Petrov DA (2008) Selection on codon bias. Annu Rev Genet 42:287–299

    CAS  PubMed  Google Scholar 

  • Hou ZC, Yang N (2003) Factors affecting codon usage in Yersinia pestis. Sheng Wu Hua Xue Yu Sheng Wu Wu Li Xue Bao (Shanghai) 35:580–586

    CAS  Google Scholar 

  • Huang X, Xu J, Chen L, Wang Y, Gu X, Peng X (2017) Analysis of transcriptome data reveals multifactor constraint on codon usage in Taenia multiceps. BMC Genomics 18:308

    PubMed  PubMed Central  Google Scholar 

  • Ikemura T (1981) Correlation between the abundance of Escherichia coli transfer RNAs and the occurrence of the respective codons in its protein genes. J Mol Biol 146:1–21

    CAS  PubMed  Google Scholar 

  • Iriarte A, Sanguinetti M, Fernández-Calero T, Naya H, Ramón A, Musto H (2012) Translational selection on codon usage in the genus Aspergillus. Gene 506:98–105

    CAS  PubMed  Google Scholar 

  • Irwin B, Heck JD, Hatfield GW (1995) Codon pair utilization biases influence translational elongation step times. J Biol Chem 270:22801–22806

    CAS  PubMed  Google Scholar 

  • Jia X, Liu S, Zheng H, Li B, Qi Q, Wei L (2015) Non-uniqueness of factors constraint on the codon usage in Bombyx mori. BMC Genomics 16:356

    PubMed  PubMed Central  Google Scholar 

  • Jiang W, Lv B, Wu X, Wang J, Wu G, Shi C et al (2017) Analysis of synonymous codon usage patterns in the edible fungus Volvariella volvacea. Biotechnol Appl Biochem 64:218–224

    PubMed  Google Scholar 

  • Jose RC, Goyari S, Louis B, Waikhom SD, Handique PJ, Talukdar NC (2016) Investigation on the biotrophic interaction of Ustilago esculenta on Zizania latifolia found in the Indo-Burma biodiversity hotspot. Microb Pathog 98:6–15

    PubMed  Google Scholar 

  • Kahali B, Basak S, Ghosh TC (2007) Reinvestigating the codon and amino acid usage of S. cerevisiae genome: a new insight from protein secondary structure analysis. Biochem Biophys Res Commun 354:693–699

    CAS  PubMed  Google Scholar 

  • Kämper J, Kahmann R, Bölker M, Ma LJ, Brefort T, Saville BJ et al (2006) Insights from the genome of the biotrophic fungal plant pathogen Ustilago maydis. Nature 444:97–101

    PubMed  Google Scholar 

  • Karlin S, Burge C (1995) Dinucleotide relative abundance extremes: a genomic signature. Trends Genet 11:283–290

    CAS  PubMed  Google Scholar 

  • Karlin S, Mrazek J (1996) What drives codon choices in human genes? J Mol Biol 262:459–472

    CAS  PubMed  Google Scholar 

  • Kunec D, Osterrieder N (2016) Codon pair bias is a direct consequence of dinucleotide bias. Cell Rep 14:55–67

    CAS  PubMed  Google Scholar 

  • Kyte J, Doolittle RF (1982) A simple method for displaying the hydropathic character of a protein. J Mol Biol 157:105–132

    CAS  PubMed  Google Scholar 

  • Lanver D, Tollot M, Schweizer G, Presti LL, Reissmann S, Ma LS et al (2017) Ustilago maydis effectors and their impact on virulence. Nat Rev Microbiol 15:409–421

    CAS  PubMed  Google Scholar 

  • Laurie JD, Linning R, Bakkeren G (2008) Hallmarks of RNA silencing are found in the smut fungus Ustilago hordei but not in its close relative Ustilago maydis. Curr Genet 53:49–58

    CAS  PubMed  Google Scholar 

  • Laurie JD, Ali S, Linning R, Mannhaupt G, Wong P, Güldener U et al (2012) Genome comparison of barley and maize smut fungi reveals targeted loss of RNA silencing components and species-specific presence of transposable elements. Plant Cell 24:1733–1745

    CAS  PubMed  PubMed Central  Google Scholar 

  • Li J, Zhou J, Wu Y, Yang S, Tian D (2015) GC-content of synonymous codons profoundly influences amino acid usage. G3 (Bethesda) 5:2027–2036

    CAS  Google Scholar 

  • Li X, Song H, Kuang Y, Chen S, Tian P, Li C (2016) Genome-wide analysis of codon usage bias in Epichloë festucae. Int J Mol Sci 17:1138

    CAS  PubMed Central  Google Scholar 

  • Liu G, Wu J, Yang H, Bao Q (2010) Codon usage patterns in Corynebacterium glutamicum: mutational bias, natural selection and amino acid conservation. Comp Funct Genomics 2010:343569

    PubMed  PubMed Central  Google Scholar 

  • Lloyd AT, Sharp PM (1991) Codon usage in Aspergillus nidulans. Mol Gen Genet 230:288–294

    CAS  PubMed  Google Scholar 

  • Lobry JR, Gautier C (1994) Hydrophobicity, expressivity and aromaticity are the major trends of amino-acid usage in 999 Escherichia coli chromosome-encoded genes. Nucleic Acids Res 11:3174–3180

    Google Scholar 

  • McInerney JO (1998) Replicational and transcriptional selection on codon usage in Borrelia burgdorferi. Proc Natl Acad Sci USA 95:10698–10703

    CAS  PubMed  Google Scholar 

  • Moriyama EN, Powell JR (1997) Codon usage bias and tRNA abundance in Drosophila. J Mol Evol 45:514–523

    CAS  PubMed  Google Scholar 

  • Moriyama EN, Powell JR (1998) Gene length and codon usage bias in Drosophila melanogaster, Saccharomyces cerevisiae and Escherichia coli. Nucleic Acids Res 26:3188–3193

    CAS  PubMed  PubMed Central  Google Scholar 

  • Nielsen J (1993) Host specificity of Ustilago avenae and U. hordei on eight species of Avena. Canadian J Plant Pathol 15:14–16

    Google Scholar 

  • Ohama T, Muto A, Osawa S (1990) Role of GC-biased mutation pressure on synonymous codon choice in Micrococcus luteus, a bacterium with a high genomic GC-content. Nucleic Acids Res 18:1565–1569

    CAS  PubMed  PubMed Central  Google Scholar 

  • Ohkubo S, Muto A, Kawauchi Y, Yamao F, Osawa S (1987) The ribosomal protein gene cluster of Mycoplasma capricolum. Mol Gen Genet 210:314–322

    CAS  PubMed  Google Scholar 

  • Peden J (1999) Analysis of codon usage. Dissertation, University of Nottingham

  • Plotkin JB, Kudla G (2011) Synonymous but not the same: the causes and consequences of codon bias. Nat Rev Genet 12:32–42

    CAS  PubMed  Google Scholar 

  • Rabe F, Bosch J, Stirnberg A, Guse T, Bauer L, Seitner D et al (2016) A complete toolset for the study of Ustilago bromivora and Brachypodium sp. as a fungal-temperate grass pathosystem. Elife 5:e20522

    PubMed  PubMed Central  Google Scholar 

  • Rocha EP (2004) Codon usage bias from tRNA’s point of view: redundancy, specialization, and efficient decoding for translation optimization. Genome Res 14:2279–2286

    CAS  PubMed  PubMed Central  Google Scholar 

  • Romero H, Zavala A, Musto H, Bernardi G (2003) The influence of translational selection on codon usage in fishes from the family Cyprinidae. Gene 317:141–147

    CAS  PubMed  Google Scholar 

  • Roy A, Mukhopadhyay S, Sarkar I, Sen A (2015) Comparative investigation of the various determinants that influence the codon and amino acid usage patterns in the genus Bifidobacterium. World J Microbiol Biotechnol 31:959–981

    CAS  PubMed  Google Scholar 

  • Roy A, Sen A, Chakrobarty S, Sarkar I (2017) Comprehensive profiling of functional attributes, virulence potential and evolutionary dynamics in mycobacterial secretomes. World J Microbiol Biotechnol 34:5

    PubMed  Google Scholar 

  • Sharp PM, Li WH (1986) An evolutionary perspective on synonymous codon usage in unicellular organisms. J Mol Evol 24:28–38

    CAS  PubMed  Google Scholar 

  • Sharp PM, Li WH (1987) The codon adaptation index—a measure of directional synonymous codon usage bias, and its potential applications. Nucleic Acids Res 15:1281–1295

    CAS  PubMed  PubMed Central  Google Scholar 

  • Sharp PM, Cowe E, Higgins DG, Shields DC, Wolfe KH, Wright F (1988) Codon usage patterns in Escherichia coli, Bacillus subtilis, Saccharomyces cerevisiae, Schizosaccharomyces pombe, Drosophila melanogaster and Homo sapiens; a review of the considerable within-species diversity. Nucleic Acids Res 16:8207–8211

    CAS  PubMed  PubMed Central  Google Scholar 

  • Sharp PM, Stenico M, Peden JF, Lloyd AT (1993) Codon usage: mutational bias, translational selection, or both? Biochem Soc Trans 21:835

    CAS  PubMed  Google Scholar 

  • Shi X, Huang J, Liang C, Liu S, Xie J, Liu C (2001) Is there a close relationship between synonymous codon bias and codon–anticodon binding strength in human genes? Chin Sci Bull 46:1015–1019

    CAS  Google Scholar 

  • Smith DR, Chapman MR (2010) Economical evolution: microbes reduce the synthetic cost of extracellular proteins. mBio 1:e00131–e210

    PubMed  PubMed Central  Google Scholar 

  • Song H, Liu J, Song Q, Zhang Q, Tian P, Nan Z (2017) Comprehensive analysis of codon usage bias in seven Epichloë species and their peramine-coding genes. Front Microbiol 8:1419

    PubMed  PubMed Central  Google Scholar 

  • Tats A, Tenson T, Remm M (2008) Preferred and avoided codon pairs in three domains of life. BMC Genomics 9:463

    PubMed  PubMed Central  Google Scholar 

  • Testa AC, Oliver RP, Hane JK (2016) OcculterCut: a comprehensive survey of AT-rich regions in fungal genomes. Genome Biol Evol 8:2044–2064

    PubMed  PubMed Central  Google Scholar 

  • Wan XF, Xu D, Kleinhofs A, Zhou J (2004) Quantitative relationship between synonymous codon usage bias and GC composition across unicellular genomes. BMC Evol Biol 4:19

    PubMed  PubMed Central  Google Scholar 

  • Wang QM, Begerow D, Groenewald M, Liu XZ, Theelen B, Bai FY (2015) Multigene phylogeny and taxonomic revision of yeasts and related fungi in the Ustilaginomycotina. Stud Mycol 81:55–83

    PubMed  PubMed Central  Google Scholar 

  • Whittle CA, Extavour CG (2015) Codon and amino acid usage are shaped by selection across divergent model organisms of the Pancrustacea. G3 (Bethesda) 5:2307–2321

    CAS  Google Scholar 

  • Whittle CA, Extavour CG (2016) Expression-linked patterns of codon usage, amino acid frequency, and protein length in the basally branching arthropod Parasteatoda tepidariorum. Genome Biol Evol 8:2722–2736

    CAS  PubMed  PubMed Central  Google Scholar 

  • Whittle CA, Sun Y, Johannesson H (2011) Evolution of synonymous codon usage in Neurospora tetrasperma and Neurospora discrete. Genome Biol Evol 3:332–343

    CAS  PubMed  PubMed Central  Google Scholar 

  • Williford A, Demuth JP (2012) Gene expression levels are correlated with synonymous codon usage, amino acid composition, and gene architecture in the red flour beetle, Tribolium castaneum. Mol Biol Evol 29:3755–3766

    CAS  PubMed  PubMed Central  Google Scholar 

  • Wollenberg T, Schirawski J (2014) Comparative genomics of plant fungal pathogens: the Ustilago–Sporisorium paradigm. PLoS Pathog 10:e1004218

    PubMed  PubMed Central  Google Scholar 

  • Wright F (1990) The ‘effective number of codons’ used in a gene. Gene 87:23–29

    CAS  PubMed  Google Scholar 

  • Xia X (2013) DAMBE5: a comprehensive software package for data analysis in molecular biology and evolution. Mol Biol Evol 30:1720–1728

    CAS  PubMed  PubMed Central  Google Scholar 

  • Ye Z, Pan Y, Zhang Y, Cui H, Jin G, McHardy AC (2017) Comparative whole-genome analysis reveals artificial selection effects on Ustilago esculenta genome. DNA Res 24:635–648

    CAS  PubMed  PubMed Central  Google Scholar 

  • Yi S, Li Y, Wang W (2018) Selection shapes the patterns of codon usage in three closely related species of genus Misgurnus. Genomics 110:134–142

    CAS  PubMed  Google Scholar 

  • Zhang YM, Shao ZQ, Yang LT, Sun XQ, Mao YF, Chen JQ, Wang B (2013) Non-random arrangement of synonymous codons in archaea coding sequences. Genomics 101:362–367

    CAS  PubMed  Google Scholar 

  • Zhou M, Li X (2009) Analysis of synonymous codon usage patterns in different plant mitochondrial genomes. Mol Biol Rep 36:2039–2046

    CAS  PubMed  Google Scholar 

  • Zhou HQ, Ning LW, Zhang HX, Guo FB (2014) Analysis of the relationship between genomic GC Content and patterns of base usage, codon usage and amino acid usage in prokaryotes: similar GC content adopts similar compositional frequencies regardless of the phylogenetic lineages. PLoS ONE 9:e107319

    PubMed  PubMed Central  Google Scholar 

  • Zhou Z, Dang Y, Zhou M, Li L, Yu C, Fu J et al (2016) Codon usage is an important determinant of gene expression levels largely through its effects on transcription. Proc Natl Acad Sci USA 113:E6117–E6125

    CAS  PubMed  Google Scholar 

Download references

Acknowledgements

The authors would like to thank the University of KwaZulu-Natal for providing a postdoctoral fellowship to AR to execute this research work.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Johannes van Staden.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary file1 (PDF 1256 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Roy, A., van Staden, J. Comprehensive profiling of codon usage signatures and codon context variations in the genus Ustilago. World J Microbiol Biotechnol 35, 118 (2019). https://doi.org/10.1007/s11274-019-2693-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11274-019-2693-y

Keywords

Navigation