Advertisement

Regulation and metabolic engineering strategies for permeases of Saccharomyces cerevisiae

  • Peng Zhang
  • Qian Chen
  • Guiming Fu
  • linglin Xia
  • Xing HuEmail author
Review
  • 76 Downloads

Abstract

Microorganisms have evolved permeases to incorporate various essential nutrients and exclude harmful products, which assists in adaptation to different environmental conditions for survival. As permeases are directly involved in the utilization of and regulatory response to nutrient sources, metabolic engineering of microbial permeases can predictably influence nutrient metabolism and regulation. In this mini-review, we have summarized the mechanisms underlying the general regulation of permeases, and the current advancements and future prospects of metabolic engineering strategies targeting the permeases in Saccharomyces cerevisiae. The different types of permeases and their regulatory mechanisms have been discussed. Furthermore, methods for metabolic engineering of permeases have been highlighted. Understanding the mechanisms via which permeases are meticulously regulated and engineered will not only facilitate research on regulation of global nutrition and yeast metabolic engineering, but can also provide important insights for future studies on the synthesis of valuable products and elimination of harmful substances in S. cerevisiae.

Keywords

Amino acids transport Glucose transport Transporter engineering Metabolic engineering strategies 

Notes

Acknowledgements

This work was supported by the National Natural Science Foundation of China (Grant No. 31801470), Undergraduate Training Program for Innovation and Entrepreneurship of Nanchang University (Grant Nos. 2018303, 20190402112).

Compliance with ethical standards

Conflict of interest

The authors have no conflict of interest.

References

  1. Agresti JJ et al (2010) Ultrahigh-throughput screening in drop-based microfluidics for directed evolution. Proc Natl Acad Sci USA 107:4004–4009.  https://doi.org/10.1073/pnas.0910781107 CrossRefPubMedGoogle Scholar
  2. Ahmad M, Bussey H (1986) Yeast arginine permease: nucleotide sequence of the CAN1 gene. Curr Genet 10:587–592.  https://doi.org/10.1007/BF00418125 CrossRefPubMedGoogle Scholar
  3. Amodeo GA, Rudolph MJ, Tong L (2007) Crystal structure of the heterotrimer core of Saccharomyces cerevisiae AMPK homologue SNF1. Nature 449:492–495.  https://doi.org/10.1038/nature06127 CrossRefPubMedGoogle Scholar
  4. Andreasson C, Ljungdahl PO (2002) Receptor-mediated endoproteolytic activation of two transcription factors in yeast. Genes Dev 16:3158–3172.  https://doi.org/10.1101/gad.239202 CrossRefPubMedPubMedCentralGoogle Scholar
  5. Bao Z et al (2018) Genome-scale engineering of Saccharomyces cerevisiae with single-nucleotide precision. Nat Biotechnol 36:505–508.  https://doi.org/10.1038/nbt.4132 CrossRefPubMedGoogle Scholar
  6. Bargues M, Salom D, Gomez A, Paricio N, PerezAlonso M, PerezOrtin JE (1996) Sequencing analysis of a 4.1 kb subtelomeric region from yeast chromosome IV identifies HXT15, a new member of the hexose transporter family. Yeast 12:1005–1011.  https://doi.org/10.1002/(Sici)1097-0061(199609)12:10b%3c1005:Aid-Yea979%3e3.0.Co;2-B CrossRefPubMedGoogle Scholar
  7. Beck T, Hall MN (1999) The TOR signalling pathway controls nuclear localization of nutrient-regulated transcription factors. Nature 402:689–692.  https://doi.org/10.1038/45287 CrossRefPubMedGoogle Scholar
  8. Becuwe M et al (2012a) A molecular switch on an arrestin-like protein relays glucose signaling to transporter endocytosis. J Cell Biol 196:247–259.  https://doi.org/10.1083/jcb.201109113 CrossRefPubMedPubMedCentralGoogle Scholar
  9. Becuwe M, Herrador A, Haguenauer-Tsapis R, Vincent O, Leon S (2012b) Ubiquitin-mediated regulation of endocytosis by proteins of the arrestin family. Biochem Res Int 2012:242764.  https://doi.org/10.1155/2012/242764 CrossRefPubMedPubMedCentralGoogle Scholar
  10. Bernales S, Papa F, Walter P (2006) Intracellular signaling by the unfolded protein response. Annu Rev Cell Dev Biol 22:487–508.  https://doi.org/10.1146/annurev.cellbio.21.122303.120200 CrossRefPubMedGoogle Scholar
  11. Boles E, Bruno A (2004) Role of transporter-like sensors in glucose and amino acid signalling in yeast. Top Curr Genet 9:155–178.  https://doi.org/10.1007/b95773 CrossRefGoogle Scholar
  12. Boles E, Hollenberg CP (1997) The molecular genetics of hexose transport in yeasts. FEMS Microbiol Rev 21:85–111.  https://doi.org/10.1111/j.1574-6976.1997.tb00346.x CrossRefPubMedGoogle Scholar
  13. Brachmann CB, Davies A, Cost GJ, Caputo E, Li J, Hieter P, Boeke JD (1998) Designer deletion strains derived from Saccharomyces cerevisiae S288C: a useful set of strains and plasmids for PCR-mediated gene disruption and other applications. Yeast 14:115–132.  https://doi.org/10.1002/(SICI)1097-0061(19980130)14:2%3c115:AID-YEA204%3e3.0.CO;2-2 CrossRefPubMedGoogle Scholar
  14. Broach JR (2012) Nutritional control of growth and development in yeast. Genetics 192:73–105.  https://doi.org/10.1534/genetics.111.135731 CrossRefPubMedPubMedCentralGoogle Scholar
  15. Brummelkamp TR, Bernards R, Agami R (2002) A system for stable expression of short interfering RNAs in mammalian cells. Science 296:550–553.  https://doi.org/10.1126/science.1068999 CrossRefPubMedGoogle Scholar
  16. Bullard JH, Mostovoy Y, Dudoit S, Brem RB (2010) Polygenic and directional regulatory evolution across pathways in Saccharomyces. Proc Natl Acad Sci USA 107:5058–5063.  https://doi.org/10.1073/pnas.0912959107 CrossRefPubMedGoogle Scholar
  17. Buziol S, Becker J, Baumeister A, Jung S, Mauch K, Reuss M, Boles E (2002) Determination of in vivo kinetics of the starvation-induced Hxt5 glucose transporter of Saccharomyces cerevisiae. FEMS Yeast Res 2:283–291.  https://doi.org/10.1016/s1567-1356(02)00113-7 CrossRefPubMedGoogle Scholar
  18. Charron MJ, Dubin RA, Michels CA (1986) Structural and functional analysis of the MAL1 locus of Saccharomyces cerevisiae. Mol Cell Biol 6:3891–3899.  https://doi.org/10.1128/mcb.6.11.3891 CrossRefPubMedPubMedCentralGoogle Scholar
  19. Chow TH, Sollitti P, Marmur J (1989) Structure of the multigene family of MAL loci in Saccharomyces. Mol Gen Genet 217:60–69CrossRefGoogle Scholar
  20. Conrad M, Schothorst J, Kankipati HN, Van Zeebroeck G, Rubio-Texeira M, Thevelein JM (2014) Nutrient sensing and signaling in the yeast Saccharomyces cerevisiae. FEMS Microbiol Rev 38:254–299.  https://doi.org/10.1111/1574-6976.12065 CrossRefPubMedPubMedCentralGoogle Scholar
  21. Cuperus JT, Groves B, Kuchina A, Rosenberg AB, Jojic N, Fields S, Seelig G (2017) Deep learning of the regulatory grammar of yeast 5' untranslated regions from 500,000 random sequences. Genome Res 27:2015–2024.  https://doi.org/10.1101/gr.224964.117 CrossRefPubMedPubMedCentralGoogle Scholar
  22. Day RE, Higgins VJ, Rogers PJ, Dawes IW (2002) Characterization of the putative maltose transporters encoded by YDL247w and YJR160c. Yeast 19:1015–1027.  https://doi.org/10.1002/yea.894 CrossRefPubMedGoogle Scholar
  23. Day RE, Rogers PJ, Dawes IW, Higgins VJ (2002) Molecular analysis of maltotriose transport and utilization by Saccharomyces cerevisiae. Appl Environ Microbiol 68:5326–5335CrossRefGoogle Scholar
  24. De Boer M, Bebelman JP, Goncalves PM, Maat J, Van Heerikhuizen H, Planta RJ (1998) Regulation of expression of the amino acid transporter gene BAP3 in Saccharomyces cerevisiae. Mol Microbiol 30:603–613CrossRefGoogle Scholar
  25. De Hertogh B, Hancy F, Goffeau A, Baret PV (2006) Emergence of species-specific transporters during evolution of the hemiascomycete phylum. Genetics 172:771–781.  https://doi.org/10.1534/genetics.105.046813 CrossRefPubMedPubMedCentralGoogle Scholar
  26. DiCarlo JE, Norville JE, Mali P, Rios X, Aach J, Church GM (2013) Genome engineering in Saccharomyces cerevisiae using CRISPR-Cas systems. Nucleic Acids Res 41:4336–4343.  https://doi.org/10.1093/nar/gkt135 CrossRefPubMedPubMedCentralGoogle Scholar
  27. Donaton MCV, Holsbeeks I, Lagatie O, Van Zeebroeck G, Crauwels M, Winderickx J, Thevelein JM (2003) The Gap1 general amino acid permease acts as an amino acid sensor for activation of protein kinase A targets in the yeast Saccharomyces cerevisiae. Mol Microbiol 50:911–929.  https://doi.org/10.1046/j.1365-2958.2003.03732.x CrossRefPubMedGoogle Scholar
  28. Dupre S, Urban-Grimal D, Haguenauer-Tsapis R (2004) Ubiquitin and endocytic internalization in yeast and animal cells. Biochim Biophys Acta 1695:89–111.  https://doi.org/10.1016/j.bbamcr.2004.09.024 CrossRefPubMedGoogle Scholar
  29. During-Olsen L, Regenberg B, Gjermansen C, Kielland-Brandt MC, Hansen J (1999) Cysteine uptake by Saccharomyces cerevisiae is accomplished by multiple permeases. Curr Genet 35:609–617.  https://doi.org/10.1007/s002940050459 CrossRefPubMedGoogle Scholar
  30. Elbashir SM, Harborth J, Lendeckel W, Yalcin A, Weber K, Tuschl T (2001) Duplexes of 21-nucleotide RNAs mediate RNA interference in cultured mammalian cells. Nature 411:494–498.  https://doi.org/10.1038/35078107 CrossRefPubMedGoogle Scholar
  31. Forsberg H, Ljungdahl PO (2001) Genetic and biochemical analysis of the yeast plasma membrane Ssy1p-Ptr3p-Ssy5p sensor of extracellular amino acids. Mol Cell Biol 21:814–826.  https://doi.org/10.1128/MCB.21.3.814-826.2001 CrossRefPubMedPubMedCentralGoogle Scholar
  32. Georis I, Feller A, Tate JJ, Cooper TG, Dubois E (2009) Nitrogen catabolite repression-sensitive transcription as a readout of Tor pathway regulation: the genetic background, reporter gene and GATA factor assayed determine the outcomes. Genetics 181:861–874.  https://doi.org/10.1534/genetics.108.099051 CrossRefPubMedPubMedCentralGoogle Scholar
  33. Godard P, Urrestarazu A, Vissers S, Kontos K, Bontempi G, van Helden J, Andre B (2007) Effect of 21 different nitrogen sources on global gene expression in the yeast Saccharomyces cerevisiae. Mol Cell Biol 27:3065–3086.  https://doi.org/10.1128/MCB.01084-06 CrossRefPubMedPubMedCentralGoogle Scholar
  34. Hamedirad M, Lian J, Li H, Zhao H (2018) RNAi assisted genome evolution unveils yeast mutants with improved xylose utilization. Biotechnol Bioeng 115:1552–1560.  https://doi.org/10.1002/bit.26570 CrossRefPubMedGoogle Scholar
  35. Hara KY et al (2017) Transporter engineering in biomass utilization by yeast. FEMS Yeast Res.  https://doi.org/10.1093/femsyr/fox061 CrossRefPubMedGoogle Scholar
  36. Hatanaka H, Mitsunaga H, Fukusaki E (2018) Inhibition of Saccharomyces cerevisiae growth by simultaneous uptake of glucose and maltose. J Biosci Bioeng 125:52–58.  https://doi.org/10.1016/j.jbiosc.2017.07.013 CrossRefPubMedGoogle Scholar
  37. Henderson R, Poolman B (2017) Proton-solute coupling mechanism of the maltose transporter from Saccharomyces cerevisiae. Sci Rep 7:14375.  https://doi.org/10.1038/s41598-017-14438-1 CrossRefPubMedPubMedCentralGoogle Scholar
  38. Hertogh BD, Carvajal E, Talla E, Dujon B, Baret P, Goffeau A (2002) Phylogenetic classification of transporters and other membrane proteins from Saccharomyces cerevisiae. Funct Integr Genomic 2:154–170.  https://doi.org/10.1007/s10142-002-0060-8 CrossRefGoogle Scholar
  39. Hicke L, Dunn R (2003) Regulation of membrane protein transport by ubiquitin and ubiquitin-binding proteins. Annu Rev Cell Dev Biol 19:141–172.  https://doi.org/10.1146/annurev.cellbio.19.110701.154617 CrossRefPubMedGoogle Scholar
  40. Hinnebusch A, Natarajan K (2002) Gcn4p, a master regulator of gene expression, is controlled at multiple levels by diverse signals of starvation and stress. Eukaryot Cell 1:22–32.  https://doi.org/10.1128/EC.01.1.22-32.2002 CrossRefPubMedPubMedCentralGoogle Scholar
  41. Hofman-Bang J (1999) Nitrogen catabolite repression in Saccharomyces cerevisiae. Mol Biotechnol 12:35–73.  https://doi.org/10.1385/MB:12:1:35 CrossRefPubMedGoogle Scholar
  42. Horak J (2013) Regulations of sugar transporters: insights from yeast. Curr Genet 59:1–31.  https://doi.org/10.1007/s00294-013-0388-8 CrossRefPubMedGoogle Scholar
  43. Hoshida H, Kondo M, Kobayashi T, Yarimizu T, Akada R (2017) 5´-UTR introns enhance protein expression in the yeast Saccharomyces cerevisiae. Appl Microbiol Biotechnol 101:241–251.  https://doi.org/10.1007/s00253-016-7891-z CrossRefPubMedGoogle Scholar
  44. Hu Y, Zhu Z, Nielsen J, Siewers V (2018) Heterologous transporter expression for improved fatty alcohol secretion in yeast. Metab Eng 45:51–58.  https://doi.org/10.1016/j.ymben.2017.11.008 CrossRefPubMedGoogle Scholar
  45. Iraqui I, Vissers S, Bernard F, de Craene J, Boles E, Urrestarazu A, André B (1999) Amino acid signaling in Saccharomyces cerevisiae : A permease-like sensor of external amino acids and F-box protein Grr1p are required for transcriptional induction of the AGP1 gene, which encodes a broad-specificity amino acid permease. Mol Cell Biol 19:989–1001CrossRefGoogle Scholar
  46. Isnard AD, Thomas D, Surdin-Kerjan Y (1996) The study of methionine uptake in Saccharomyces cerevisiae reveals a new family of amino acid permeases. J Mol Biol 262:473–484.  https://doi.org/10.1006/jmbi.1996.0529 CrossRefPubMedGoogle Scholar
  47. Jane U, Victor BH, Peter Q, Gold ND, Martin VJJ, Radhakrishnan M, Kristin B (2011) Chemical and synthetic genetic array analysis identifies genes that suppress xylose utilization and fermentation in Saccharomyces cerevisiae. G3 (Bethesda) 1:247–258. https://doi.org/10.1534/g3.111.000695 CrossRefGoogle Scholar
  48. Jauniaux JC, Grenson M (1990) GAP1, the general amino acid permease gene of Saccharomyces cerevisiae. Nucleotide sequence, protein similarity with the other bakers yeast amino acid permeases, and nitrogen catabolite repression. Eur J Biochem 190:39–44CrossRefGoogle Scholar
  49. Jo Y, Sguigna PV, DeBose-Boyd RA (2011) Membrane-associated ubiquitin ligase complex containing gp78 mediates sterol-accelerated degradation of 3-hydroxy-3-methylglutaryl-coenzyme A reductase. J Biol Chem 286:15022–15031.  https://doi.org/10.1074/jbc.M110.211326 CrossRefPubMedPubMedCentralGoogle Scholar
  50. Jonathane K, Warrenr P, Lindaf B (2008) Analysis of the major hexose transporter genes in wine strains of Saccharomyces cerevisiae. Am J Enol Vitic 59:265–275.  https://doi.org/10.1016/SO065-2911(07)53004-3 CrossRefGoogle Scholar
  51. Jordan P, Choe JY, Boles E, Oreb M (2016) Hxt13, Hxt15, Hxt16 and Hxt17 from Saccharomyces cerevisiae represent a novel type of polyol transporters. Sci Rep 6:23502.  https://doi.org/10.1038/srep23502 CrossRefPubMedPubMedCentralGoogle Scholar
  52. Jørgensen MU, Bruun MB, Didion T, Kielland-Brandt MC (1998) Mutations in five loci affecting GAP1-independent uptake of neutral amino acids in yeast. Yeast 14:103–114.  https://doi.org/10.1002/(SICI)1097-0061(19980130)14:2%3c103:AID-YEA203%3e3.0.CO;2-C CrossRefPubMedGoogle Scholar
  53. Karhumaa K, Wu BQ, Kielland-Brandt MC (2010) Conditions with high intracellular glucose inhibit sensing through glucose sensor Snf3 in Saccharomyces cerevisiae. J Cell Biochem 110:920–925.  https://doi.org/10.1002/jcb.22605 CrossRefPubMedGoogle Scholar
  54. Kaur J, Bachhawat AK (2007) Yct1p, a novel, high-affinity, cysteine-specific transporter from the yeast Saccharomyces cerevisiae. Genetics 176:877–890.  https://doi.org/10.1534/genetics.107.070342 CrossRefPubMedPubMedCentralGoogle Scholar
  55. Kayikci O, Nielsen J (2015) Glucose repression in Saccharomyces cerevisiae. FEMS Yeast Res 15:fov068.  https://doi.org/10.1093/femsyr/fov068 CrossRefGoogle Scholar
  56. Kim JH, Johnston M (2006) Two glucose-sensing pathways converge on Rgt1 to regulate expression of glucose transporter genes in Saccharomyces cerevisiae. J Biol Chem 281:26144–26149.  https://doi.org/10.1074/jbc.M603636200 CrossRefPubMedGoogle Scholar
  57. Kitamoto K, Oda K, Gomi K, Takahashi K (1990) Construction of uracil and tryptophan auxotrophic mutants from sake yeasts by disruption of URA3 and TRP1 genes. J Agric Chem Soc Japan 54:2979–2987.  https://doi.org/10.1080/00021369.1990.10870447 CrossRefGoogle Scholar
  58. Ko CH, Liang H, Gaber RF (1993) Roles of multiple glucose transporters in Saccharomyces cerevisiae. Mol Cell Biol 13:638–648.  https://doi.org/10.1128/mcb.13.1.638 CrossRefPubMedPubMedCentralGoogle Scholar
  59. Kosugi A, Koizumi Y, Yanagida F, Udaka S (2001) MUP1, high affinity methionine permease, is involved in cysteine uptake by Saccharomyces cerevisiae. Biosci Biotechnol Biochem 65:728–731.  https://doi.org/10.1271/bbb.65.728 CrossRefPubMedGoogle Scholar
  60. Kraakman L et al (1999) A Saccharomyces cerevisiae G-protein coupled receptor, Gpr1, is specifically required for glucose activation of the cAMP pathway during the transition to growth on glucose. Mol Microbiol 32:1002–1012.  https://doi.org/10.1046/j.1365-2958.1999.01413.x CrossRefPubMedGoogle Scholar
  61. Kruckeberg AL (1996) The hexose transporter family of Saccharomyces cerevisiae. Arch Microbiol 166:283–292CrossRefGoogle Scholar
  62. Kruckeberg AL, Bisson LF (1990) The HXT2 gene of Saccharomyces cerevisiae is required for high-affinity glucose transport. Mol Cell Biol 10:5903–5913CrossRefGoogle Scholar
  63. Leon S, Haguenauer-Tsapis R (2009) Ubiquitin ligase adaptors: regulators of ubiquitylation and endocytosis of plasma membrane proteins. Exp Cell Res 315:1574–1583.  https://doi.org/10.1016/j.yexcr.2008.11.014 CrossRefPubMedGoogle Scholar
  64. Lewis DA, Bisson LF (1991) The HXT1 gene product of Saccharomyces cerevisiae is a new member of the family of hexose transporters. Mol Cell Biol 11:3804–3813.  https://doi.org/10.1128/Mcb.11.7.3804 CrossRefPubMedPubMedCentralGoogle Scholar
  65. Li H, Schmitz O, Alper HS (2016) Enabling glucose/xylose co-transport in yeast through the directed evolution of a sugar transporter. Appl Microbiol Biotechnol 100:10215–10223.  https://doi.org/10.1007/s00253-016-7879-8 CrossRefPubMedGoogle Scholar
  66. Lian J, Mishra S, Zhao H (2018a) Recent advances in metabolic engineering of Saccharomyces cerevisiae: New tools and their applications. Metab Eng 50:85–108.  https://doi.org/10.1016/j.ymben.2018.04.011 CrossRefPubMedGoogle Scholar
  67. Lian JZ, HamediRad M, Zhao HM (2018b) Advancing metabolic engineering of Saccharomyces cerevisiae using the CRISPR/Cas system. Biotechnol J 13:e1700601.  https://doi.org/10.1002/biot.201700601 CrossRefPubMedGoogle Scholar
  68. Lin CH, MacGurn JA, Chu T, Stefan CJ, Emr SD (2008) Arrestin-related ubiquitin-ligase adaptors regulate endocytosis and protein turnover at the cell surface. Cell 135:714–725.  https://doi.org/10.1016/j.cell.2008.09.025 CrossRefPubMedGoogle Scholar
  69. Ljungdahl PO (2009) Amino-acid-induced signalling via the SPS-sensing pathway in yeast. Biochem Soc Trans 37:242–247.  https://doi.org/10.1042/BST0370242 CrossRefPubMedGoogle Scholar
  70. Ljungdahl PO, Daignan-Fornier B (2012) Regulation of amino acid, nucleotide, and phosphate metabolism in Saccharomyces cerevisiae. Genetics 190:885–929.  https://doi.org/10.1534/genetics.111.133306 CrossRefPubMedPubMedCentralGoogle Scholar
  71. Lutz S (2010) Beyond directed evolution–semi-rational protein engineering and design. Curr Opin Biotechnol 21:734–743.  https://doi.org/10.1016/j.copbio.2010.08.011 CrossRefPubMedPubMedCentralGoogle Scholar
  72. Lv Y, Zhao X, Liu L, Du G, Zhou J, Chen J (2013) A simple procedure for protein ubiquitination detection in Saccharomyces cerevisiae: Gap1p as an example. J Microbiol Methods 94:25–29.  https://doi.org/10.1016/j.mimet.2013.04.004 CrossRefPubMedGoogle Scholar
  73. MacGurn JA, Hsu PC, Smolka MB, Emr SD (2011) TORC1 regulates endocytosis via Npr1-mediated phosphoinhibition of a ubiquitin ligase adaptor. Cell 147:1104–1117.  https://doi.org/10.1016/j.cell.2011.09.054 CrossRefPubMedGoogle Scholar
  74. Marini AM, Soussi-Boudekou S, Vissers S, Andre B (1997) A family of ammonium transporters in Saccharomyces cerevisiae. Mol Cell Biol 17:4282–4293CrossRefGoogle Scholar
  75. Mathieu C et al (2017) Arginine and lysine transporters are essential for Trypanosoma brucei. PLoS ONE 12:e0168775.  https://doi.org/10.1371/journal.pone.0168775 CrossRefPubMedPubMedCentralGoogle Scholar
  76. Mayr C (2017) Regulation by 3'-untranslated regions. Annu Rev Genet 51:171–194.  https://doi.org/10.1146/annurev-genet-120116-024704 CrossRefPubMedGoogle Scholar
  77. Mccartney RR, Garnar-Wortzel L, Chandrashekarappa DG, Schmidt MC (2016) Activation and inhibition of Snf1 kinase activity by phosphorylation within the activation loop. Biochim Biophys Acta 1864:1518–1528.  https://doi.org/10.1016/j.bbapap.2016.08.007 CrossRefPubMedPubMedCentralGoogle Scholar
  78. Mcgettigan PA (2013) Transcriptomics in the RNA-seq era. Curr Opin Chem Biol 17:4–11.  https://doi.org/10.1016/j.cbpa.2012.12.008 CrossRefPubMedGoogle Scholar
  79. Natarajan K, Meyer MR, Jackson BM, Slade D, Roberts C, Hinnebusch AG, Marton MJ (2001) Transcriptional profiling shows that Gcn4p is a master regulator of gene expression during amino acid starvation in yeast. Mol Cell Biol 21:4347–4368.  https://doi.org/10.1128/MCB.21.13.4347-4368.2001 CrossRefPubMedPubMedCentralGoogle Scholar
  80. Naumov GI, Naumova ES, Michels CA (1994) Genetic variation of the repeated MAL loci in natural populations of Saccharomyces cerevisiae and Saccharomyces paradoxus. Genetics 136:803–812.  https://doi.org/10.1101/gad.8.5.629 CrossRefPubMedPubMedCentralGoogle Scholar
  81. Negoro H, Sakamoto M, Kotaka A, Matsumura K, Hata Y (2018) Mutation in the peroxin-coding gene PEX22 contributing to high malate production in Saccharomyces cerevisiae. J Biosci Bioeng 125:211–217.  https://doi.org/10.1016/j.jbiosc.2017.08.010 CrossRefPubMedGoogle Scholar
  82. Nielsen PS et al (2001) Transcriptional regulation of the Saccharomyces cerevisiae amino acid permease gene BAP2. Mol Gen Genet 264:613–622CrossRefGoogle Scholar
  83. Nijkamp JF et al (2012) De novo sequencing, assembly and analysis of the genome of the laboratory strain Saccharomyces cerevisiae CEN.PK113-7D, a model for modern industrial biotechnology. Microb Cell Fact 11:36–36.  https://doi.org/10.1016/j.meegid.2015.03.010 CrossRefPubMedPubMedCentralGoogle Scholar
  84. Nijland JG, Shin HY, de Waal PP, Klaassen P, Ajm D (2018) Increased xylose affinity of Hxt2 through gene shuffling of hexose transporters in Saccharomyces cerevisiae. J Appl Microbiol 124:503–510.  https://doi.org/10.1111/jam.13670 CrossRefPubMedGoogle Scholar
  85. Nourani A, Wesolowski-Louvel M, Delaveau T, Jacq C, Delahodde A (1997) Multiple-drug-resistance phenomenon in the yeast Saccharomyces cerevisiae: involvement of two hexose transporters. Mol Cell Biol 17:5453–5460.  https://doi.org/10.1128/mcb.17.9.5453 CrossRefPubMedPubMedCentralGoogle Scholar
  86. Oh EJ, Kwak S, Kim H, Jin YS (2017) Transporter engineering for cellobiose fermentation under lower pH conditions by engineered Saccharomyces cerevisiae. Bioresour Technol 245:1469–1475.  https://doi.org/10.1016/j.biortech.2017.05.138 CrossRefPubMedGoogle Scholar
  87. Omura F, Fujita A, Miyajima K, Fukui N (2005) Engineering of yeast Put4 permease and its application to lager yeast for efficient proline assimilation. Biosci Biotechnol Biochem 69:1162–1171.  https://doi.org/10.1271/bbb.69.1162 CrossRefPubMedGoogle Scholar
  88. Opekarova M, Caspari T, Tanner W (1993) Unidirectional arginine transport in reconstituted plasma-membrane vesicles from yeast overexpressing CAN1. Eur J Biochem 211:683–688CrossRefGoogle Scholar
  89. Ozcan S, Johnston M (1999) Function and regulation of yeast hexose transporters. Microbiol Mol Biol Rev 63:554–569PubMedPubMedCentralGoogle Scholar
  90. Ozcan S, Dover J, Rosenwald AG, Wolfl S, Johnston M (1996) Two glucose transporters in Saccharomyces cerevisiae are glucose sensors that generate a signal for induction of gene expression. Proc Natl Acad Sci USA 93:12428–12432.  https://doi.org/10.2307/40634 CrossRefPubMedGoogle Scholar
  91. Ozcan S, Dover J, Johnston M (1998) Glucose sensing and signaling by two glucose receptors in the yeast Saccharomyces cerevisiae. EMBO J 17:2566–2573.  https://doi.org/10.1093/emboj/17.9.2566 CrossRefPubMedPubMedCentralGoogle Scholar
  92. Peeters K, Thevelein JM (2014) Glucose sensing and signal transduction in Saccharomyces cerevisiae. Molecular Mechanisms in Yeast Carbon Metabolism 1:21–56.  https://doi.org/10.1007/978-3-642-55013-3_2 CrossRefGoogle Scholar
  93. Petersen SD et al (2018) Modular 5'-UTR hexamers for context-independent tuning of protein expression in eukaryotes. Nucleic Acids Res 46:e127.  https://doi.org/10.1093/nar/gky734 CrossRefPubMedPubMedCentralGoogle Scholar
  94. Polo S, Di Fiore PP (2008) Finding the right partner: science or ART? Cell 135:590–592.  https://doi.org/10.1016/j.cell.2008.10.032 CrossRefPubMedGoogle Scholar
  95. Qi L, Larson M, Gilbert L, Doudna J, Weissman J, Arkin A, Lim W (2013) Repurposing CRISPR as an RNA-guided platform for sequence-specific control of gene expression. Cell 152:1173–1183.  https://doi.org/10.1016/j.cell.2013.02.022 CrossRefPubMedPubMedCentralGoogle Scholar
  96. Regenberg B, Holmberg S, Olsen LD, Kielland-Brandt MC (1998) Dip5p mediates high-affinity and high-capacity transport of L-glutamate and L-aspartate in Saccharomyces cerevisiae. Curr Genet 33:171–177CrossRefGoogle Scholar
  97. Regenberg B, During-Olsen L, Kielland-Brandt MC, Holmberg S (1999) Substrate specificity and gene expression of the amino-acid permeases in Saccharomyces cerevisiae. Curr Genet 36:317–328.  https://doi.org/10.1007/s002940050506 CrossRefPubMedGoogle Scholar
  98. Reifenberger E, Freidel K, Ciriacy M (1995) Identification of novel HXT genes in saccharomyces cerevisiae reveals the impact of individual hexose transporters on glycolytic flux. Mol Microbiol 16:157–167.  https://doi.org/10.1111/j.1365-2958.1995.tb02400.x CrossRefPubMedGoogle Scholar
  99. Reifenberger E, Boles E, Ciriacy M (1997) Kinetic characterization of individual hexose transporters of Saccharomyces cerevisiae and their relation to the triggering mechanisms of glucose repression. Eur J Biochem 245:324–333.  https://doi.org/10.1111/j.1432-1033.1997.00324.x CrossRefPubMedGoogle Scholar
  100. Reznicek O et al (2015) Improved xylose uptake in Saccharomyces cerevisiae due to directed evolution of galactose permease Gal2 for sugar co-consumption. J Appl Microbiol 119:99–111.  https://doi.org/10.1111/jam.12825 CrossRefPubMedGoogle Scholar
  101. Risinger AL, Kaiser CA (2008) Different ubiquitin signals act at the golgi and plasma membrane to direct Gap1 trafficking. Mol Biol Cell 19:2962–2972.  https://doi.org/10.1091/mbc.E07-06-0627 CrossRefPubMedPubMedCentralGoogle Scholar
  102. Rodkaer SV, Faergeman NJ (2014) Glucose- and nitrogen sensing and regulatory mechanisms in Saccharomyces cerevisiae. FEMS Yeast Res 14:683–696.  https://doi.org/10.1111/1567-1364.12157 CrossRefPubMedGoogle Scholar
  103. Rouillon A, Surdin-Kerjan Y, Thomas D (1999) Transport of sulfonium compounds. Characterization of the s-adenosylmethionine and s-methylmethionine permeases from the yeast Saccharomyces cerevisiae. J Biol Chem 274:28096–28105CrossRefGoogle Scholar
  104. Roy A, Dement AD, Cho KH, Kim JH (2015) Assessing glucose uptake through the yeast hexose transporter 1 (Hxt1). PLoS ONE 10:e0121985.  https://doi.org/10.1371/journal.pone.0121985 CrossRefPubMedPubMedCentralGoogle Scholar
  105. Roy S et al (2018) Standards and guidelines for validating next-generation sequencing bioinformatics pipelines: A joint recommendation of the association for molecular pathology and the college of American pathologists. J Mol Diagn 4:4–27.  https://doi.org/10.1016/j.jmoldx.2017.11.003 CrossRefGoogle Scholar
  106. Ryan OW et al (2014) Selection of chromosomal DNA libraries using a multiplex CRISPR system. ELife 19:1.  https://doi.org/10.7554/eLife.03703 CrossRefGoogle Scholar
  107. Scherens B, Feller A, Vierendeels F, Messenguy F, Dubois E (2006) Identification of direct and indirect targets of the Gln3 and Gat1 activators by transcriptional profiling in response to nitrogen availability in the short and long term. FEMS Yeast Res 6:777–791.  https://doi.org/10.1111/j.1567-1364.2006.00060.x CrossRefPubMedGoogle Scholar
  108. Schmidt A, Hall MN, Koller A (1994) Two FK506 resistance-conferring genes in Saccharomyces cerevisiae, TAT1 and TAT2, encode amino acid permeases mediating tyrosine and tryptophan uptake. Mol Cell Biol 14:6597–6606.  https://doi.org/10.1128/mcb.14.10.6597 CrossRefPubMedPubMedCentralGoogle Scholar
  109. Schreve J, Garrett JM (1997) The branched-chain amino acid permease gene of Saccharomyces cerevisiae, BAP2, encodes the high-affinity leucine permease (S1). Yeast 13:435–439.  https://doi.org/10.1002/(SICI)1097-0061(199704)13:5%3c435:AID-YEA95%3e3.0.CO;2-T CrossRefPubMedGoogle Scholar
  110. Schreve JL, Garrett JM (2004) Yeast Agp2p and Agp3p function as amino acid permeases in poor nutrient conditions. Biochem Biophys Res Commun 313:745–751.  https://doi.org/10.1016/j.bbrc.2003.11.172 CrossRefPubMedGoogle Scholar
  111. Schreve JL, Sin JK, Garrett JM (1998) The Saccharomyces cerevisiae YCC5 (YCL025c) gene encodes an amino acid permease, Agp1, which transports asparagine and glutamine. J Bacteriol 180:2556–2559PubMedPubMedCentralGoogle Scholar
  112. Shashkova S, Wollman A, Leake MC, Hohmann S (2017) The yeast Mig1 transcriptional repressor is dephosphorylated by glucose-dependent and -independent mechanisms. FEMS Microbiol Lett 364:1.  https://doi.org/10.1093/femsle/fnx133 CrossRefGoogle Scholar
  113. Staschke KA et al (2010) Integration of general amino acid control and target of rapamycin (TOR) regulatory pathways in nitrogen assimilation in yeast. J Biol Chem 285:16893–16911.  https://doi.org/10.1074/jbc.M110.121947 CrossRefPubMedPubMedCentralGoogle Scholar
  114. Suizu T, Iimura Y, Gomi K, Takahashi K, Hara S, Yoshizawa K (1989) L-canavanine resistance as a positive selectable marker in diploid yeast transformation through integral disruption of the CAN1 gene. J Agric Chem Soc Japan 53:431–436.  https://doi.org/10.1080/00021369.1989.10869329 CrossRefGoogle Scholar
  115. Sychrova H, Chevallier MR (1993) Cloning and sequencing of the Saccharomyces cerevisiae gene LYP1 coding for a lysine-specific permease. Yeast 9:771–782.  https://doi.org/10.1002/yea.320090711 CrossRefPubMedGoogle Scholar
  116. Tanaka J, Fink GR (1985) The histidine permease gene (HIP1) of Saccharomyces cerevisiae. Gene 38:205–214.  https://doi.org/10.1016/0378-1119(85)90219-7 CrossRefPubMedGoogle Scholar
  117. Tate JJ, Georis I, Dubois E, Cooper TG (2010) Distinct phosphatase requirements and GATA factor responses to nitrogen catabolite repression and rapamycin treatment in Saccharomyces cerevisiae. J Biol Chem 285:17880–17895.  https://doi.org/10.1074/jbc.M109.085712 CrossRefPubMedPubMedCentralGoogle Scholar
  118. Toda T et al (1985) In yeast, RAS proteins are controlling elements of adenylate cyclase. Cell 40:27–36.  https://doi.org/10.1016/0092-8674(85)90305-8 CrossRefPubMedGoogle Scholar
  119. Tomas-Cobos L, Casadome L, Mas G, Sanz P, Posas F (2004) Expression of the HXT1 low affinity glucose transporter requires the coordinated activities of the HOG and glucose signalling pathways. J Biol Chem 279:22010–22019.  https://doi.org/10.1074/jbc.M400609200 CrossRefPubMedGoogle Scholar
  120. Tschopp JF, Emr SD, Field C, Schekman R (1986) GAL2 codes for a membrane-bound subunit of the galactose permease in Saccharomyces cerevisiae. J Bacteriol 166:313–318CrossRefGoogle Scholar
  121. Tumusiime S, Zhang C, Overstreet MS, Liu Z (2011) Differential regulation of transcription factors Stp1 and Stp2 in the Ssy1-Ptr3-Ssy5 amino acid sensing pathway. J Biol Chem 286:4620–4631CrossRefGoogle Scholar
  122. Verwaal R, Paalman JWG, Hogenkamp A, Verkleij AJ, Verrips CT, Boonstra J (2002) HXT5 expression is determined by growth rates in Saccharomyces cerevisiae. Yeast 19:1029–1038.  https://doi.org/10.1002/yea.895 CrossRefPubMedGoogle Scholar
  123. Vigentini I, Gebbia M, Belotti A, Foschino R, Roth FP (2017) CRISPR/Cas9 system as a valuable genome editing tool for wine yeasts with application to decrease urea production. Front Microbiol 8:2194.  https://doi.org/10.3389/fmicb.2017.02194 CrossRefPubMedPubMedCentralGoogle Scholar
  124. Wang M, Yu CZ, Zhao HM (2016) Directed evolution of xylose specific transporters to facilitate glucose-xylose co-utilization. Biotechnol Bioeng 113:484–491.  https://doi.org/10.1002/bit.25724 CrossRefPubMedGoogle Scholar
  125. Wieczorke R, Krampe S, Weierstall T, Freidel K, Hollenberg CP, Boles E (1999) Concurrent knock-out of at least 20 transporter genes is required to block uptake of hexoses in Saccharomyces cerevisiae. FEBS Lett 464:123–128.  https://doi.org/10.1016/S0014-5793(99)01698-1 CrossRefPubMedGoogle Scholar
  126. Winzeler EA, Davis RW (1997) Functional analysis of the yeast genome. Curr Opin Genet Dev 7:771–776.  https://doi.org/10.1016/S0959-437X(97)80039-1 CrossRefPubMedGoogle Scholar
  127. Zaman S, Lippman SI, Zhao X, Broach JR (2008) How Saccharomyces responds to nutrients. Annu Rev Genet 42:27–81.  https://doi.org/10.1146/annurev.genet.41.110306.130206 CrossRefPubMedGoogle Scholar
  128. Zaman S, Lippman SI, Schneper L, Slonim N, Broach JR (2009) Glucose regulates transcription in yeast through a network of signaling pathways. Mol Syst Biol 5:245.  https://doi.org/10.1038/msb.2009.2 CrossRefPubMedPubMedCentralGoogle Scholar
  129. Zhang P, Hu X (2018) Metabolic engineering of arginine permeases to reduce the formation of urea in Saccharomyces cerevisiae. World J Microbiol Biotechnol 34:47.  https://doi.org/10.1007/s11274-018-2430-y CrossRefPubMedGoogle Scholar
  130. Zhang P, Du G, Zou H, Chen J, Xie G, Shi Z, Zhou J (2016a) Effects of three permeases on arginine utilization in Saccharomyces cerevisiae. Sci Rep 6:20910.  https://doi.org/10.1038/srep20910 CrossRefPubMedPubMedCentralGoogle Scholar
  131. Zhang P, Du G, Zou H, Xie G, Chen J, Shi Z, Zhou J (2016b) Genome-wide mapping of nucleosome positions in Saccharomyces cerevisiae in response to different nitrogen conditions. Sci Rep 6:33970.  https://doi.org/10.1038/srep33970 CrossRefPubMedPubMedCentralGoogle Scholar
  132. Zhang P, Du G, Zou H, Xie G, Chen J, Shi Z, Zhou J (2017) Mutant potential ubiquitination sites in Dur3p enhance the urea and ethyl carbamate reduction in a model rice wine system. J Agric Food Chem 65:1641–1648.  https://doi.org/10.1021/acs.jafc.6b05348 CrossRefPubMedGoogle Scholar
  133. Zhang P et al (2018a) Metabolic engineering of four GATA factors to reduce urea and ethyl carbamate formation in a model rice wine system. J Agric Food Chem 66:10881–10889.  https://doi.org/10.1021/acs.jafc.8b04370 CrossRefPubMedGoogle Scholar
  134. Zhang W, Du G, Zhou J, Chen J (2018b) Regulation of sensing, transportation, and catabolism of nitrogen sources in Saccharomyces cerevisiae. Microbiol Mol Biol Rev 82:e00040–e117.  https://doi.org/10.1128/MMBR.00040-17 CrossRefPubMedPubMedCentralGoogle Scholar
  135. Zhao XR, Zou HJ, Fu JW, Zhou JW, Du GC, Chen J (2014) Metabolic engineering of the regulators in nitrogen catabolite repression to reduce the production of ethyl carbamate in a model rice wine system. Appl Environ Microbiol 80:392–398.  https://doi.org/10.1128/Aem.03055-13 CrossRefPubMedPubMedCentralGoogle Scholar
  136. Zhao X, Zou H, Chen J, Du G, Zhou J (2016) The modification of Gat1p in nitrogen catabolite repression to enhance non-preferred nitrogen utilization in Saccharomyces cerevisiae. Sci Rep 6:21603.  https://doi.org/10.1038/srep21603 CrossRefPubMedPubMedCentralGoogle Scholar
  137. Zhu X, Garrett J, Schreve J, Michaeli T (1996) GNP1, the high-affinity glutamine permease of S. cerevisiae. Curr Genet 30:107–114CrossRefGoogle Scholar

Copyright information

© Springer Nature B.V. 2019

Authors and Affiliations

  1. 1.State Key Laboratory of Food Science and TechnologyNanchang UniversityNanchangChina
  2. 2.School of Food Science and TechnologyNanchang UniversityNanchangChina
  3. 3.Department of SoftwareNanchang UniversityNanchangChina

Personalised recommendations