Exotoxin A-PLGA nanoconjugate vaccine against Pseudomonas aeruginosa infection: protectivity in murine model

  • Leila Safari Zanjani
  • Reza Shapouri
  • Mehrouz DezfulianEmail author
  • Mehdi Mahdavi
  • Mehdi Shafiee Ardestani
Original Paper


Pseudomonas aeruginosa is the major infectious agent of concern for cystic fibrosis (CF) patients. Therefore, it is necessary to develop appropriate strategies for preventing colonization by this bacterium and/or neutralizing virulence factors. In this study, we formulated the encapsulation of exotoxin A into PLGA nanoparticles. The biological activities of the nanovaccine candidate were also characterized. Based on the results, ETA-PLGA can act as a suitable immunogen to stimulate the humoral and cellular immune response. The antibodies raised against ETA-PLGA significantly decreased bacterial titer in the spleens of the immunized mice after challenge with PAO1 strain, compared to the control groups. The encapsulation of PLGA into ETA led to a significantly higher production of INF-γ, TNF-α, IL-4, and IL-17A cytokine responses compared to the ETA group. ETA-PLGA enhanced IgG responses in immunized mice compared to ETA antigen. We concluded that encapsulation of Pseudomonas aeruginosa ETA to PLGA nanoparticles can increase its functional activity by decreasing the bacterial dissemination.


Exotoxin A Vaccine PLGA Pseudomonas aeruginosa 



This research did not receive any specific grant from funding agencies in the public, commercial, or not-for-profit sectors.

Compliance with ethical standards

Conflict of interest

The authors declare no conflict of interest associated with the present manuscript.


  1. Bradford MM (1976) A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal Biochem 72:248–254CrossRefGoogle Scholar
  2. Choi HJ, Kim MH, Cho MS, Kim BK, Kim JY, Kim C, Park DS (2013) Improved PCR for identification of Pseudomonas aeruginosa. Appl Microbiol Biotechnol 97:3643–3651. CrossRefPubMedGoogle Scholar
  3. Cryz SJ Jr, Furer E, Que JU (1991) Synthesis and characterization of a Pseudomonas aeruginosa alginate-toxin A conjugate vaccine. Infect Immun 59:45–50PubMedPubMedCentralGoogle Scholar
  4. DeBell RM (1979) Production of exotoxin A by Pseudomonas aeruginosa in a chemically defined medium. Infect Immun 24:132–138PubMedPubMedCentralGoogle Scholar
  5. Faezi S, Safarloo M, Amirmozafari N, Nikokar I, Siadat SD, Holder IA, Mahdavi M (2014) Protective efficacy of Pseudomonas aeruginosa type-A flagellin in the murine burn wound model of infection. APMIS 122:115–127. CrossRefPubMedGoogle Scholar
  6. Gunday Tureli N et al (2017) Ciprofloxacin-loaded PLGA nanoparticles against cystic fibrosis P. aeruginosa lung infections. Eur J Pharm Biopharm 117:363–371. CrossRefPubMedGoogle Scholar
  7. Hancock RE, Speert DP (2000) Antibiotic resistance in Pseudomonas aeruginosa: mechanisms and impact on treatment. Drug Resist Updat 3:247–255. CrossRefPubMedGoogle Scholar
  8. Hertle R, Mrsny R, Fitzgerald DJ (2001) Dual-function vaccine for Pseudomonas aeruginosa: characterization of chimeric exotoxin A-pilin protein. Infect Immun 69:6962–6969. CrossRefPubMedPubMedCentralGoogle Scholar
  9. Hogardt M, Heesemann J (2010) Adaptation of Pseudomonas aeruginosa during persistence in the cystic fibrosis lung. Int J Med Microbiol 300:557–562. CrossRefPubMedGoogle Scholar
  10. Krause A, Whu WZ, Xu Y, Joh J, Crystal RG, Worgall S (2011) Protective anti-Pseudomonas aeruginosa humoral and cellular mucosal immunity by AdC7-mediated expression of the P. aeruginosa protein OprF. Vaccine 29:2131–2139. CrossRefPubMedPubMedCentralGoogle Scholar
  11. Li P et al. (2016) PLGA nano/micro particles encapsulated with pertussis toxoid (PTd) enhances Th1/Th17 immune response in a murine model International Journal of Pharmaceutics 513:183-190 CrossRefGoogle Scholar
  12. Makadia HK, Siegel SJ (2011) Poly lactic-co-glycolic acid (PLGA) as biodegradable controlled drug delivery. Carr Polym 3:1377–1397. CrossRefGoogle Scholar
  13. McEwan Deborah L, Kirienko Natalia V, Ausubel Frederick M (2012) Host translational inhibition by Pseudomonas aeruginosa exotoxin A triggers an immune Response in Caenorhabditis elegans. Cell Host Microbe 11:364–374. CrossRefPubMedPubMedCentralGoogle Scholar
  14. Michelim L, Medeiros GS, Zavascki AP (2013) Current status of Pseudomonas aeruginosa vaccine. Curr Pharm Biotechnol 14:951–959CrossRefGoogle Scholar
  15. Monday SR, Schiller NL (1996) Alginate synthesis in Pseudomonas aeruginosa: the role of AlgL (alginate lyase) and AlgX. J Bacteriol 178:625–632. CrossRefPubMedPubMedCentralGoogle Scholar
  16. Morita T, Sakamura Y, Horikiri Y, Suzuki T, Yoshino H (2000) Protein encapsulation into biodegradable microspheres by a novel S/O/W emulsion method using poly(ethylene glycol) as a protein micronization adjuvant. J Controll Release 69:435–444CrossRefGoogle Scholar
  17. Moser C et al (2002) Improved outcome of chronic Pseudomonas aeruginosa lung infection is associated with induction of a Th1-dominated cytokine response. Clin Exp Immunol 127:206–213. CrossRefPubMedPubMedCentralGoogle Scholar
  18. Park YS et al (2011) Acquisition of extensive drug-resistant Pseudomonas aeruginosa among hospitalized patients: risk factors and resistance mechanisms to carbapenems. J Hosp Infect 79:54–58. CrossRefPubMedGoogle Scholar
  19. Pillar CM, Hobden JA (2002) Pseudomonas aeruginosa exotoxin A and keratitis in mice. Invest Ophthalmol Vis Sci 43:1437–1444PubMedGoogle Scholar
  20. Sabaeifard P, Abdi-Ali A, Soudi MR, Gamazo C, Irache JM (2016) Amikacin loaded PLGA nanoparticles against Pseudomonas aeruginosa. Eur J Pharm Sci 93:392–398. CrossRefPubMedGoogle Scholar
  21. Schaefers MM, Duan B, Mizrahi B, Lu R, Reznor G, Kohane DS, Priebe GP (2018) PLGA-encapsulation of the Pseudomonas aeruginosa PopB vaccine antigen improves Th17 responses and confers protection against experimental acute pneumonia. Vaccine 36:6926–6932. CrossRefPubMedGoogle Scholar
  22. Sharp FA et al (2009) Uptake of particulate vaccine adjuvants by dendritic cells activates the NALP3 inflammasome. Proc Natl Acad Sci USA 106:870–875. CrossRefPubMedGoogle Scholar
  23. Singh D, Somani VK, Aggarwal S, Bhatnagar R (2015) PLGA (85:15) nanoparticle based delivery of rL7/L12 ribosomal protein in mice protects against Brucella abortus 544 infection: a promising alternate to traditional adjuvants. Mol Immunol 68:272–279. CrossRefPubMedGoogle Scholar
  24. Skwarczynski M, Toth I (2014) Recent advances in peptide-based subunit nanovaccines. Nanomedicine 9:2657–2669. CrossRefPubMedGoogle Scholar
  25. Tanomand A, Najar Peerayeh S, Farajnia S, Majidi J (2013) Protective properties of nontoxic recombinant exotoxin A (domain I–II) against Pseudomonas aeruginosa infection. Iran J Biotechnol 11:193–198. CrossRefGoogle Scholar
  26. Weber A, Zimmermann C, Mausberg AK, Dehmel T, Kieseier BC, Hartung H-P, Hofstetter HH (2016) Pseudomonas aeruginosa and its bacterial components influence the cytokine response in thymocytes and splenocytes. Infect Immun 84:1413–1423. CrossRefPubMedPubMedCentralGoogle Scholar

Copyright information

© Springer Nature B.V. 2019

Authors and Affiliations

  1. 1.Department of Microbiology, Karaj BranchIslamic Azad UniversityKarajIran
  2. 2.Department of Microbiology, Zanjan BranchIslamic Azad UniversityZanjanIran
  3. 3.Pasteur Institute of IranTehranIran
  4. 4.Department of Radiopharmacy, Faculty of PharmacyTehran University of Medical SciencesTehranIran

Personalised recommendations