Advertisement

Unnatural amino acids: production and biotechnological potential

  • Tanja NarancicEmail author
  • Sarah A. Almahboub
  • Kevin E. O’Connor
Review
  • 130 Downloads

Abstract

Unnatural amino acids (UAAs) are valuable building blocks in the manufacture of a wide range of pharmaceuticals. UAAs exhibit biological activity as free acids and they can be incorporated into linear or cyclic peptides with biological activity. However, the scope of biotechnological application of UAAs goes beyond this, as they can be used to investigate the structure and dynamics of proteins, to study protein interactions, or to modulate the activity of proteins in living cells. The means to expand nature’s repertoire of amino acids include chemical and biological routes. An UAA can be made through chemical modifications of natural amino acids, or related compounds. These modifications typically rely on utilisation of ligands and palladium catalysts. Employing biocatalysts in the synthesis of UAAs can also afford novel molecules with different physical and chemical properties. A number of transaminases for example have been identified and employed in the production of UAAs. This review will compare the chemical and biological routes for the synthesis of UAAs and provide an overview of their applications.

Keywords

Unnatural amino acids Noncanonical amino acids Biocatalysis Chemical synthesis Bioactive molecules Protein modification 

Notes

References

  1. Ageitos JM, Sanchez-Perez A, Calo-Mata P, Villa TG (2017) Antimicrobial peptides (AMPs): Ancient compounds that represent novel weapons in the fight against bacteria. Biochem Pharmacol 133:117–138.  https://doi.org/10.1016/j.bcp.2016.09.018 CrossRefPubMedGoogle Scholar
  2. Agostini F, Völler JS, Koksch B, Acevedo-Rocha Carlos G, Kubyshkin V, Budisa N (2017) Biocatalysis with unnatural amino acids: Enzymology meets xenobiology. Angewandte Chemie International Edition 56:9680–9703.  https://doi.org/10.1002/anie.201610129 CrossRefPubMedGoogle Scholar
  3. Albrecht J, Sidoryk-Wegrzynowicz M, Zielinska M, Aschner M (2010) Roles of glutamine in neurotransmission. Neuron Glia Biol 6:263–276.  https://doi.org/10.1017/S1740925x11000093 CrossRefPubMedGoogle Scholar
  4. Almahboub SA et al (2018a) Biosynthesis of 2-aminooctanoic acid and its use to terminally modify a lactoferricin B peptide derivative for improved antimicrobial activity. Appl Microbiol Biot 102:789–799.  https://doi.org/10.1007/s00253-017-8655-0 CrossRefGoogle Scholar
  5. Almahboub SA, Narancic T, Fayne D, O’Connor KE (2018b) Single point mutations reveal amino acid residues important for Chromobacterium violaceum transaminase activity in the production of unnatural amino acids. Sci Rep-UK.  https://doi.org/10.1038/s41598-018-35688-7 CrossRefGoogle Scholar
  6. Anderhuber N, Fladischer P, Gruber-Khadjawi M, Mairhofer J, Striedner G, Wiltschi B (2016) High-level biosynthesis of norleucine in E. coli for the economic labeling of proteins. J Biotechnol 235:100–111.  https://doi.org/10.1016/j.jbiotec.2016.04.033 CrossRefPubMedGoogle Scholar
  7. Ansell SM (2014) Brentuximab vedotin. Blood 124:3197–3200.  https://doi.org/10.1182/blood-2014-06-537514 CrossRefPubMedGoogle Scholar
  8. Aoki W, Ueda M (2013) Characterization of antimicrobial peptides toward the development of novel antibiotics. Pharmaceuticals (Basel) 6:1055–1081.  https://doi.org/10.3390/ph6081055 CrossRefGoogle Scholar
  9. Axup JY et al (2012) Synthesis of site-specific antibody-drug conjugates using unnatural amino acids. P Natl Acad Sci USA 109:16101–16106.  https://doi.org/10.1073/pnas.1211023109 CrossRefGoogle Scholar
  10. Belokon YN, Bakhmutov VI, Chernoglazova NI, Kochetkov KA, Vitt SV, Garbalinskaya NS, Belikov VM (1988) General method for the asymmetric-synthesis of alpha-amino acids V via alkylation of the chiral Nickel(II) Schiff base complexes of glycine and alanine. J Chem Soc Perk T 1:305–312.  https://doi.org/10.1039/p19880000305 CrossRefGoogle Scholar
  11. Bhonsle JB, Clark T, Bartolotti L, Hicks RP (2013) A brief overview of antimicrobial peptides containing unnatural amino acids and ligand-based approaches for peptide ligands. Curr Top Med Chem 13:3205–3224CrossRefGoogle Scholar
  12. Blaskovich MA (2016) Unusual amino acids in medicinal chemistry. J Med Chem 59:10807–10836.  https://doi.org/10.1021/acs.jmedchem.6b00319 CrossRefPubMedGoogle Scholar
  13. Bogosian G, Violand BN, Dorwardking EJ, Workman WE, Jung PE, Kane JF (1989) Biosynthesis and incorporation into protein of norleucine by Escherichia coli. J Biol Chem 264:531–539PubMedGoogle Scholar
  14. Bommarius AS, Schwarm M, Drauz K (1998) Biocatalysis to amino acid-based chiral pharmaceuticals—examples and perspectives. Journal of Molecular Catalysis B: Enzymatic 5:1–11.  https://doi.org/10.1016/S1381-1177(98)00009-5 CrossRefGoogle Scholar
  15. Bugg TDH (2004) Introduction to enzyme and coenzyme chemistry, 3rd edn. Blackwell publishing Ltd, LondonCrossRefGoogle Scholar
  16. Cao LQ, van Langen L, Sheldon RA (2003) Immobilised enzymes: carrier-bound or carrier-free? Curr Opin Biotech 14:387–394.  https://doi.org/10.1016/S0958-1669(03)00096-X CrossRefPubMedGoogle Scholar
  17. Cassimjee KE, Branneby C, Abedi V, Wells A, Berglund P (2010) Transaminations with isopropyl amine: equilibrium displacement with yeast alcohol dehydrogenase coupled to in situ cofactor regeneration. Chem Commun 46:5569–5571.  https://doi.org/10.1039/c0cc00050g CrossRefGoogle Scholar
  18. Causey TB, Zhou S, Shanmugam KT, Ingram LO (2003) Engineering the metabolism of Escherichia coli W3110 for the conversion of sugar to redox-neutral and oxidized products: Homoacetate production. P Natl Acad Sci USA 100:825–832.  https://doi.org/10.1073/pnas.0337684100 CrossRefGoogle Scholar
  19. Chen C, Hu J, Zeng P, Chen Y, Xu H, Lu JR (2014) High cell selectivity and low-level antibacterial resistance of designed amphiphilic peptide G(IIKK)(3)I-NH(2). ACS Appl Mater Interfaces 6:16529–16536.  https://doi.org/10.1021/am504973d CrossRefPubMedGoogle Scholar
  20. Cho B-K, Seo J-H, Kang T-W, Kim B-G (2003) Asymmetric synthesis of L-homophenylalanine by equilibrium-shift using recombinant aromatic L-amino acid transaminase. Biotechnology and bioengineering 83:226–234.  https://doi.org/10.1002/bit.10661 CrossRefPubMedGoogle Scholar
  21. Cirino PC, Tang Y, Takahashi K, Tirrell DA, Arnold FH (2003) Global incorporation of norleucine in place of methionine in cytochrome P450 BM-3 heme domain increases peroxygenase activity. Biotechnology and bioengineering 83:729–734.  https://doi.org/10.1002/bit.10718 CrossRefPubMedGoogle Scholar
  22. Clerici F, Erba E, Gelmi ML, Pellegrino S (2016) Non-standard amino acids and peptides: From self-assembly to nanomaterials. Tetrahedron Lett 57:5540–5550.  https://doi.org/10.1016/j.tetlet.2016.11.022 CrossRefGoogle Scholar
  23. Coleman MW (1983) Determination of the enantiomeric purity of oxfenicine by High-Performance Liquid-Chromatography. Chromatographia 17:23–26.  https://doi.org/10.1007/Bf02265103 CrossRefGoogle Scholar
  24. Costa SA et al (2018) Photo-crosslinkable unnatural amino acids enable facile synthesis of thermoresponsive nano- to microgels of intrinsically disordered polypeptides. Adv Mater.  https://doi.org/10.1002/adma.201704878 CrossRefPubMedGoogle Scholar
  25. Debabov VG (2003) The threonine story. In: Faurie R, Thommel J (eds) Microbial production of L-amino acids, vol 79. Springer, Berlin, HeidelbergCrossRefGoogle Scholar
  26. Deszcz D, Affaticati P, Ladkau N, Gegel A, Ward JM, Hailes HC, Dalby PA (2015) Single active-site mutants are sufficient to enhance serine:pyruvate alpha-transaminase activity in an omega-transaminase. The FEBS journal 282:2512–2526.  https://doi.org/10.1111/febs.13293 CrossRefPubMedGoogle Scholar
  27. Dittmer K, Goering HL, Goodman I, Cristol SJ (1948) The Inhibition of microbiological growth by allylglycine, methallylglycine and crotylglycine. J Am Chem Soc 70:2499–2501.  https://doi.org/10.1021/ja01187a057 CrossRefPubMedGoogle Scholar
  28. Faber K (2011) Biocatalytic applications. In: Biotransformations in organic chemistry. Springer, Berlin, HeidelbergCrossRefGoogle Scholar
  29. Farmer LJ et al (2015) Discovery of VX-509 (Decernotinib): A potent and selective Janus kinase 3 inhibitor for the treatment of autoimmune diseases. J Med Chem 58:7195–7216.  https://doi.org/10.1021/acs.jmedchem.5b00301 CrossRefPubMedGoogle Scholar
  30. Fosgerau K, Hoffmann T (2015) Peptide therapeutics: current status and future directions. Drug Discov Today 20:122–128.  https://doi.org/10.1016/j.drudis.2014.10.003 CrossRefPubMedGoogle Scholar
  31. Genchi G (2017) An overview on D-amino acids. Amino Acids 49:1521–1533.  https://doi.org/10.1007/s00726-017-2459-5 CrossRefPubMedGoogle Scholar
  32. Hamblett KJ et al (2004) Effects of drug loading on the antitumor activity of a monoclonal antibody drug conjugate. Clin Cancer Res 10:7063–7070.  https://doi.org/10.1158/1078-0432.Ccr-04-0789 CrossRefPubMedGoogle Scholar
  33. Hancock REW, Chapple DS (1999) Peptide antibiotics. Antimicrob Agents Ch 43:1317–1323CrossRefGoogle Scholar
  34. Hancock RE, Sahl HG (2006) Antimicrobial and host-defense peptides as new anti-infective therapeutic strategies. Nat Biotechnol 24:1551–1557.  https://doi.org/10.1038/nbt1267 CrossRefPubMedGoogle Scholar
  35. Hanson RL et al (2007) Preparation of an amino acid intermediate for the dipeptidyl peptidase IV inhibitor, saxagliptin, using a modified phenylalanine dehydrogenase. Advanced Synthesis & Catalysis 349:1369–1378.  https://doi.org/10.1002/adsc.200700013 CrossRefGoogle Scholar
  36. Harris TL, Worthington RJ, Melander C (2011) A facile synthesis of 1,5-disubstituted-2-aminoimidazoles: antibiotic activity of a first generation library. Bioorganic & medicinal chemistry letters 21:4516–4519.  https://doi.org/10.1016/j.bmcl.2011.05.123 CrossRefGoogle Scholar
  37. Höhne M, Bornscheuer UT (2009) Biocatalytic routes to optically active amines. Chemcatchem 1:42–51.  https://doi.org/10.1002/cctc.200900110 CrossRefGoogle Scholar
  38. Hönig M, Sondermann P, Turner NJ, Carreira EM (2017) Enantioselective chemo- and biocatalysis: Partners in retrosynthesis. Angew Chem Int Edit 56:8942–8973.  https://doi.org/10.1002/anie.201612462 CrossRefGoogle Scholar
  39. Houng JY, Wu ML, Chen ST (1996) Kinetic resolution of amino acid esters catalyzed by lipases. Chirality 8:418–422.  https://doi.org/10.1002/(Sici)1520-636x(1996)8:6%3c418:Aid-Chir2%3e3.0.Co;2-8 CrossRefPubMedGoogle Scholar
  40. Hulsewede D, Tanzler M, Suss P, Mildner A, Menyes U, von Langermann J (2018) Development of an in situ-product crystallization (ISPC)-concept to shift the reaction equilibria of selected amine transaminase-catalyzed reactions. Eur J Org Chem:2130-2133  https://doi.org/10.1002/ejoc.201800323 CrossRefGoogle Scholar
  41. Humble MS, Cassimjee KE, Abedi V, Federsel H-J, Berglund P (2012) Key amino acid residues for reversed or improved enantiospecificity of an omega-transaminase. Chemcatchem 4:1167–1172.  https://doi.org/10.1002/cctc.201100487 CrossRefGoogle Scholar
  42. Iwane Y, Hitomi A, Murakami H, Katoh T, Goto Y, Suga H (2016) Expanding the amino acid repertoire of ribosomal polypeptide synthesis via the artificial division of codon boxes. Nature Chemistry 8:317–325.  https://doi.org/10.1038/Nchem.2446 CrossRefPubMedGoogle Scholar
  43. Iwata R, Furumoto S, Pascali C, Bogni A, Ishiwata K (2003) Radiosynthesis ofO-[11C]methyl-L-tyrosine andO-[18F]Fluoromethyl-L-tyrosine as potential PET tracers for imaging amino acid transport. Journal of Labelled Compounds and Radiopharmaceuticals 46:555–566.  https://doi.org/10.1002/jlcr.696 CrossRefGoogle Scholar
  44. Jiang W, Fang BS (2016) Construction of a tunable multi-enzyme-coordinate expression system for biosynthesis of chiral drug intermediates. Sci Rep-UK 6:30426.  https://doi.org/10.1038/srep30462 CrossRefGoogle Scholar
  45. Kaulmann U, Smithies K, Smith MEB, Hailes HC, Ward JM (2007) Substrate spectrum of omega-transaminase from Chromobacterium violaceum DSM30191 and its potential for biocatalysis. Enzyme Microb Technol 41:628–637.  https://doi.org/10.1016/j.enzmictec.2007.05.011 CrossRefGoogle Scholar
  46. Kelly SA, Pohle S, Wharry S, Mix S, Allen CCR, Moody TS, Gilmore BF (2018) Application of omega-transaminases in the pharmaceutical industry. Chem Rev 118:349–367.  https://doi.org/10.1021/acs.chemrev.7b00437 CrossRefPubMedGoogle Scholar
  47. Kindler H, Burris H, Sandler A, Oliff I (2009) A phase II multicenter study of L-alanosine, a potent inhibitor of adenine biosynthesis, in patients with MTAP-deficient cancer. Invest New Drug 27:75–81.  https://doi.org/10.1007/s10637-008-9160-1 CrossRefGoogle Scholar
  48. Konno R, Brückner H, D’Aniello A, Fischer G, Fujii N, Homma H (2007) D-Amino acids: A new frontier in amino acids and protein research − Practical methods and protocols. Nova Science Publishers Inc, New YorkGoogle Scholar
  49. Koszelewski D, Lavandera I, Clay D, Rozzell D, Kroutil W (2008) Asymmetric synthesis of optically pure pharmacologically relevant amines employing omega-transaminases. Adv Synt Catal 350:2761–2766.  https://doi.org/10.1002/adsc.200800496 CrossRefGoogle Scholar
  50. Koszelewski D, Goritzer M, Clay D, Seisser B, Kroutil W (2010a) Synthesis of optically active amines employing recombinant omega-transaminases in E. coli cells. Chemcatchem 2:73–77.  https://doi.org/10.1002/cctc.200900220 CrossRefGoogle Scholar
  51. Koszelewski D, Tauber K, Faber K, Kroutil W (2010b) Omega-transaminases for the synthesis of non-racemic alpha-chiral primary amines. Trends in biotechnology 28:324–332.  https://doi.org/10.1016/j.tibtech.2010.03.003 CrossRefPubMedGoogle Scholar
  52. Kovtun YV, Goldmacher VS (2007) Cell killing by antibody-drug conjugates. Cancer Lett 255:232–240.  https://doi.org/10.1016/j.canlet.2007.04.01 CrossRefPubMedGoogle Scholar
  53. Krix G, Bommarius AS, Drauz K, Kottenhahn M, Schwarm M, Kula MR (1997) Enzymatic reduction of α-keto acids leading to l-amino acids, d- or l-hydroxy acids. J Biotechnol 53:29–39.  https://doi.org/10.1016/S0168-1656(96)01657-4 CrossRefGoogle Scholar
  54. Lacoste AM, Darriet M, Neuzil E, Legoffic F (1988) Inhibition of alanine racemase by vinylglycine and its phosphonic analog - a H-1 nuclear magnetic-resonance spectroscopy study. Biochem Soc T 16:606–608.  https://doi.org/10.1042/bst0160606 CrossRefGoogle Scholar
  55. Lan Q, Wang XS, He RJ, Ding CH, Maruoka K (2009) Highly efficient asymmetric amination of beta-keto esters catalyzed by chiral quaternary ammonium bromides. Tetrahedron Lett 50:3280–3282.  https://doi.org/10.1016/j.tetlet.2009.02.041 CrossRefGoogle Scholar
  56. Li B, Zhang J, Xu YJ, Yang XX, Li L (2017) Improved synthesis of unnatural amino acids for peptide stapling. Tetrahedron Lett 58:2374–2377.  https://doi.org/10.1016/j.tetlet.2017.05.007 CrossRefGoogle Scholar
  57. Lloyd KG, Davidson L, Hornykiewicz O (1975) The neurochemistry of Parkinson’s disease: effect of L-dopa therapy. J Pharmacol Exp Ther 195:453–464PubMedGoogle Scholar
  58. Martínková L, Křen V (2010) Biotransformations with nitrilases. Current opinion in chemical biology 14:130–137.  https://doi.org/10.1016/j.cbpa.2009.11.018 CrossRefPubMedGoogle Scholar
  59. Marvel CS, du Vigneaud V (2003) α-amino-n-caproic acid.  https://doi.org/10.1002/0471264180.os004.02
  60. Mathew S, Yun H (2012) Omega-transaminases for the production of optically pure amines and unnatural amino acids. ACS Catal 2:993–1001.  https://doi.org/10.1021/cs300116n CrossRefGoogle Scholar
  61. Meyer DE, Chilkoti A (1999) Purification of recombinant proteins by fusion with thermally-responsive polypeptides. Nat Biotechnol 17:1112–1115CrossRefGoogle Scholar
  62. Nian Y et al (2016) Purely chemical approach for preparation of D-alpha-amino acids via (S)-to-(R)-interconversion of unprotected tailor-made alpha-amino acids. J Organ Chem 81:3501–3508.  https://doi.org/10.1021/acs.joc.5b02707 CrossRefGoogle Scholar
  63. Njogu PM, Gut J, Rosenthal PJ, Chibale K (2013) Design, synthesis, and antiplasmodial activity of hybrid compounds based on (2R,3S)-N-benzoyl-3-phenylisoserine. ACS Med Chem Lett 4:637–641.  https://doi.org/10.1021/ml400164t CrossRefPubMedPubMedCentralGoogle Scholar
  64. Okeley NM et al (2010) Intracellular activation of SGN-35, a potent anti-CD30 antibody-drug conjugate. Clin Cancer Res 16:888–897.  https://doi.org/10.1158/1078-0432.Ccr-09-2069 CrossRefPubMedGoogle Scholar
  65. Olive C, Batzloff M, Horvath A, Clair T, Yarwood P, Toth I, Good MF (2003) Potential of lipid core peptide technology as a novel self-adjuvanting vaccine delivery system for multiple different synthetic peptide immunogens. IAI 71:2373–2383.  https://doi.org/10.1128/iai.71.5.2373-2383.2003 CrossRefGoogle Scholar
  66. Park ES, Shin JS (2015) Biocatalytic cascade reactions for asymmetric synthesis of aliphatic amino acids in a biphasic reaction system. J Mol Catal B-Enzym 121:9–14.  https://doi.org/10.1016/j.molcatb.2015.07.011 CrossRefGoogle Scholar
  67. Park ES, Dong JY, Shin JS (2013) Omega-transaminase catalyzed asymmetric synthesis of unnatural amino acids using isopropylamine as an amino donor. Organ Biomol Chem 11:6929–6933.  https://doi.org/10.1039/c3ob40495a CrossRefGoogle Scholar
  68. Parmeggiani F, Weise NJ, Ahmed ST, Turner NJ (2018) Synthetic and therapeutic applications of ammonia-lyases and aminomutases. Chem Rev 118:73–118.  https://doi.org/10.1021/acs.chemrev.6b00824 CrossRefPubMedGoogle Scholar
  69. Patil ST et al (2007) Activation of mGlu2/3 receptors as a new approach to treat schizophrenia: a randomized Phase 2 clinical trial. Nat Med 13:1102.  https://doi.org/10.1038/nm1632 CrossRefPubMedGoogle Scholar
  70. Rando RR (1974) Irreversible inhibition of aspartate aminotransferase by 2-amino-3-butenoic acid. Biochemistry 13:3859–3863.  https://doi.org/10.1021/bi00716a006 CrossRefPubMedGoogle Scholar
  71. Rudat J, Brucher BR, Syldatk C (2012) Transaminases for the synthesis of enantiopure beta-amino acids. AMB Express 2:11.  https://doi.org/10.1186/2191-0855-2-11 CrossRefPubMedPubMedCentralGoogle Scholar
  72. Savile CK et al (2010) Biocatalytic asymmetric synthesis of chiral amines from ketones applied to sitagliptin manufacture. Science 329:305–309.  https://doi.org/10.1126/science.1188934 CrossRefPubMedGoogle Scholar
  73. Scott WL et al (2009) Distributed drug discovery, part 2: global rehearsal of alkylating agents for the synthesis of resin-bound unnatural amino acids and virtual D3 catalog construction. J Comb Chem 11:14–33CrossRefGoogle Scholar
  74. Shagaghi N, Palombo EA, Clayton AHA, Bhave M (2018) Antimicrobial peptides: biochemical determinants of activity and biophysical techniques of elucidating their functionality. World J Microb Biot 34:62.  https://doi.org/10.1007/s11274-018-2444-5 CrossRefGoogle Scholar
  75. Sharma M, Mangas-Sanchez J, Turner NJ, Grogan G (2017) NAD(P)H-dependent dehydrogenases for the asymmetric reductive amination of ketones: structure, mechanism, evolution and application. Adv Synth Catal 359:2011–2025.  https://doi.org/10.1002/adsc.201700356 CrossRefPubMedPubMedCentralGoogle Scholar
  76. Shin JS, Kim BG (1997) Kinetic resolution of alpha-methylbenzylamine with omega-transaminase screened from soil microorganisms: application of a biphasic system to overcame product inhibition. Biotechnol Bioeng 55:348–358.  https://doi.org/10.1002/(Sici)1097-0290(19970720)55:2%3c348:Aid-Bit12%3e3.0.Co;2-D CrossRefPubMedGoogle Scholar
  77. Shin J-S, Kim B-G (2001) Comparison of the omega-transaminases from different microorganisms and application to production of chiral amines. Biosci Biotechnol Biochem 65:1782–1788CrossRefGoogle Scholar
  78. Shin JS, Kim BG (2009) Transaminase-catalyzed asymmetric synthesis of L-2-aminobutyric acid from achiral reactants. Biotechnol Lett 31:1595–1599.  https://doi.org/10.1007/s10529-009-0057-7 CrossRefPubMedGoogle Scholar
  79. Soth M et al (2012) 3-Amido pyrrolopyrazine JAK kinase inhibitors: development of a JAK3 vs JAK1 selective inhibitor and evaluation in cellular and in vivo models. J Med Chem 56:345–356.  https://doi.org/10.1021/jm301646k CrossRefPubMedGoogle Scholar
  80. Stevenazzi A, Marchini M, Sandrone G, Vergani B, Lattanzio M (2014) Amino acidic scaffolds bearing unnatural side chains: an old idea generates new and versatile tools for the life sciences. Bioorg Med Chem Lett 24:5349–5356.  https://doi.org/10.1016/j.bmcl.2014.10.016 CrossRefPubMedGoogle Scholar
  81. Truppo MD, Turner NJ, Rozzell JD (2009) Efficient kinetic resolution of racemic amines using a transaminase in combination with an amino acid oxidase. Chem Commun 16:2127–2129.  https://doi.org/10.1039/b902995h CrossRefGoogle Scholar
  82. Tsubogo T, Kano Y, Ikemoto K, Yamashita Y, Kobayashi S (2010) Synthesis of optically active, unnatural alpha-substituted glutamic acid derivatives by a chiral calcium-catalyzed 1,4-addition reaction. Tetrahedron Asymmetr 21:1221–1225.  https://doi.org/10.1016/j.tetasy.2010.03.004 CrossRefGoogle Scholar
  83. Vedha-Peters K, Gunawardana M, Rozzell JD, Novick SJ (2006) Creation of a broad-range and highly stereoselective D-amino acid dehydrogenase for the one-step synthesis of D-amino acids. J Am Chem Soc 128:10923–10929.  https://doi.org/10.1021/ja0603960 CrossRefPubMedPubMedCentralGoogle Scholar
  84. Veetil VP, Raj H, de Villiers M, Tepper PG, Dekker FJ, Quax WJ, Poelarends GJ (2013) Enantioselective synthesis of N-substituted aspartic acids using an engineered variant of methylaspartate ammonia lyase. Chemcatchem 5:1325–1327.  https://doi.org/10.1002/cctc.201200906 CrossRefGoogle Scholar
  85. Velkov T, Roberts KD, Nation RL, Thompson PE, Li J (2013) Pharmacology of polymyxins: new insights into an ‘old’ class of antibiotics. Future Microbiol 8:711–724.  https://doi.org/10.2217/Fmb.13.39 CrossRefPubMedGoogle Scholar
  86. Wang YJ, Wu C (2018) Site-specific conjugation of polymers to proteins. Biomacromolecules 19:1804–1825.  https://doi.org/10.1021/acs.biomac.8b00248 CrossRefPubMedGoogle Scholar
  87. Wang B, Land H, Berglund P (2013) An efficient single-enzymatic cascade for asymmetric synthesis of chiral amines catalyzed by omega transaminase. Chem Commun 49:161–163.  https://doi.org/10.1039/c2cc37232k CrossRefGoogle Scholar
  88. Wang Z, Huang D, Xu P, Dong X, Wang X, Dai Z (2015) The asymmetric alkylation reaction of glycine derivatives catalyzed by the novel chiral phase transfer catalysts. Tetrahedron Lett 56:1067–1071.  https://doi.org/10.1016/j.tetlet.2015.01.063 CrossRefGoogle Scholar
  89. Wang X, Saba T, Yiu HHP, Howe RF, Anderson JA, Shi J (2017) Cofactor NAD(P)H regeneration inspired by heterogeneous pathways. Chem 2:621–654.  https://doi.org/10.1016/j.chempr.2017.04.009 CrossRefGoogle Scholar
  90. Weaver BA (2014) How Taxol/paclitaxel kills cancer cells. Mol Biol Cell 25:2677–2681.  https://doi.org/10.1091/mbc.E14-04-0916 CrossRefPubMedPubMedCentralGoogle Scholar
  91. Williams RM, Sinclair PJ, Zhai D, Chen D (1988) Practical asymmetric syntheses of alpha-amino acids through carbon-carbon bond constructions on electrophilic glycine templates. J Am Chem Soc 110:1547–1557.  https://doi.org/10.1021/ja00213a031 CrossRefGoogle Scholar
  92. Xiao H, Schultz PG (2016) At the interface of chemical and biological synthesis: An expanded genetic code. Csh Perspect Biol 8:023945.  https://doi.org/10.1101/cshperspect.a023945 CrossRefGoogle Scholar
  93. Xue YP, Cao CH, Zheng YG (2018) Enzymatic asymmetric synthesis of chiral amino acids. Chem Soc Rev 47:1516–1561.  https://doi.org/10.1039/c7cs00253j CrossRefPubMedGoogle Scholar
  94. Yadav VN, Comotti A, Sozzani P, Bracco S, Bonge-Hansen T, Hennum M, Gorbitz CH (2015) Microporous molecular materials from dipeptides containing non-proteinogenic residues. Angew Chem Int Edit 54:15684–15688.  https://doi.org/10.1002/anie.201507321 CrossRefGoogle Scholar
  95. Yeaman MR, Yount NY (2003) Mechanisms of antimicrobial peptide action and resistance. Pharmacol Rev 55:27–55.  https://doi.org/10.1124/pr.55.1.2 CrossRefPubMedGoogle Scholar
  96. Zhang KC, Li H, Cho KM, Liao JC (2010) Expanding metabolism for total biosynthesis of the nonnatural amino acid L-homoalanine. Proc Natl Acad Sci USA 107:6234–6239.  https://doi.org/10.1073/pnas.0912903107 CrossRefPubMedGoogle Scholar
  97. Zhang F, Sun HZ, Song Z, Zhou SX, Wen XA, Xu QL, Sun HB (2015) Stereoselective synthesis of arylglycine derivatives via palladium-catalyzed alpha-arylation of a chiral nickel(II) glycinate. J Organ Chem 80:4459–4464.  https://doi.org/10.1021/acs.joc.5b00314 CrossRefGoogle Scholar
  98. Zhu L, Wu Z, Jin J-M, Tang S-Y (2016) Directed evolution of leucine dehydrogenase for improved efficiency of l-tert-leucine synthesis. Appl Microbiol Biotechnol 100:5805–5813.  https://doi.org/10.1007/s00253-016-7371-5 CrossRefPubMedGoogle Scholar
  99. Zwick CR, Renata H (2018) Remote C-H hydroxylation by an alpha-ketoglutarate-dependent dioxygenase enables efficient chemoenzymatic synthesis of manzacidin C and proline analogs. J Am Chem Soc 140:1165–1169.  https://doi.org/10.1021/jacs.7b12918 CrossRefPubMedGoogle Scholar

Copyright information

© Springer Nature B.V. 2019

Authors and Affiliations

  1. 1.UCD Earth Institute and School of Biomolecular and Biomedical ScienceUniversity College DublinDublin 4Ireland
  2. 2.School of Biomolecular and Biomedical Sciences, Earth Institute & BEACON - Bioeconomy Research Centre, O’Brien Centre for ScienceUniversity College DublinDublin 4Ireland

Personalised recommendations