Advertisement

The role of electron shuttle enhances Fe(III)-mediated reduction of Cr(VI) by Shewanella oneidensis MR-1

  • Xiaohong Liu
  • Gang Chu
  • Yanying Du
  • Jing Li
  • Youbin SiEmail author
Original Paper
  • 98 Downloads

Abstract

Chromate is one of the hazardous toxic pollutants. Reduction of Cr(VI) to Cr(III) has shown to reduce the toxicity of chromate. This work examined the reduction of Cr(VI) using an anaerobic batch cultures of Shewanella oneidensis MR-1 containing Fe(III). To do so, 10 mg/L Cr(VI) was reduced to Cr(III) within 3 days along with the oxidization of Fe(II) to Fe(III). The removal rate of Cr(VI) increased with increasing the concentration of Fe(III). In the absence of Cr(VI), the Fe(II) concentration of the batch culture increased with the growth of S. oneidensis MR-1. These data showed that S. oneidensis MR-1 could reduce Fe(III) into Fe(II), resulting in reduction of Cr(VI) to Cr(III). During this process, the anthraquinone-2,6-disulfonate (AQDS) acted as an electron shuttle. Microscopic analysis showed that Cr(VI) had toxic effects on S. oneidensis MR-1 due to the appearance of Cr species on the bacterial surface. Cr2O3 or Cr(OH)3 precipitates formed during Cr(VI) reduction was identified using X-ray photoelectron spectroscopy. The AQDS as an electron shuttle enhanced the Cr(VI) reduction by S. oneidensis MR-1. Microbial reduction of Cr(VI) can be a useful technique for Cr detoxification.

Keywords

Cr(VI) reduction Dissimilatory iron reducing-bacteria Fe(III) reduction Electron shuttle Anthraquinone-2,6-disulfonate 

Notes

Acknowledgements

This work was supported by the National Key Technology R & D Program of China (Grant No. 2015BAD05B04), the Fund of Key Laboratory of Soil Environment and Pollution Remediation, Institute of Soil Science, Chinese Academy of Sciences and Key Project of Anhui Provincial Department of Education (Grant No. KJ2016A228).

References

  1. Ahmad T, Mustafa S, Naeem A, Anwar F, Shah KH, Mehmood T (2014) Selective sorption of chromium from tannery wastes by hybrid cation exchange resin. Asian J Chem 26(14):4351–4355CrossRefGoogle Scholar
  2. Ai Z, Cheng Y, Zhang L, Qiu J (2008) Efficient removal of Cr(VI) from aqueous solution with Fe@Fe2O3 core-shell nanowires. Environ Sci Technol 42(18):6955–6960CrossRefGoogle Scholar
  3. Belchik SM, Kennedy DW, Dohnalkova AC, Wang Y, Sevinc PC, Wu H, Lin Y, Lu HP, Fredrickson JK, Shi L (2011) Extracellular reduction of hexavalent chromium by cytochromes MtrC and OmcA of Shewanella oneidensis MR-1. Appl Environ Microbiol 77(12):4035–4041CrossRefGoogle Scholar
  4. Carvalho AAC, Silvestre DM, Leme FO, Naozuka J, Intima DP, Nomura CS (2019) Feasibility of measuring Cr(III) and Cr(VI) in water by laser-induced breakdown spectroscopy using ceramics as the solid support. Microchem J 144:33–38CrossRefGoogle Scholar
  5. Chardin B, Giudici-Orticoni MT, De Luca G, Guigliarelli B, Bruschi M (2003) Hydrogenases in sulfate-reducing bacteria function as chromium reductase’. Appl Microbiol Biotechnol 63(3):315–321CrossRefGoogle Scholar
  6. Chourey K, Thompson MR, Shah M, Zhang B, VerBerkmoes NC, Thompson DK, Hettich RL (2009) Comparative temporal proteomics of a response regulator (SO2426)-deficient strain and wild-type Shewanella oneidensis MR-1 during chromate transformation. J Proteome Res 8(1):59–71CrossRefGoogle Scholar
  7. Cummings DE, Fendorf S, Singh N, Sani RK, Peyton BM, Magnuson TS (2007) Reduction of Cr(VI) under acidic conditions by the facultative Fe(III)-reducing bacterium Acidiphilium cryptum. Environ Sci Technol 41(1):146–152CrossRefGoogle Scholar
  8. Daulton TL, Little BJ, Lowe K, Jones-Meehan J (2002) Electron energy loss spectroscopy techniques for the study of microbial chromium(VI) reduction’. J Microbiol Methods 50(1):39–54CrossRefGoogle Scholar
  9. Ding SL, Xie LH, Dong LX, Liu J, Zhao LG (2016) Development of a reagent kit for rapid determination of chromium (VI). J Soc Leather Technol Chem 100(4):175–181Google Scholar
  10. Du Y, Liu X, Li J, Li L, Si Y (2018) Reduction of Cr(VI) by Shewanella oneidensis MR-1 and its influencing factors. China Environ Sci 38(7):2740–2745Google Scholar
  11. Field EK, Gerlach R, Viamajala S, Jennings LK, Peyton BM, Apel WA (2013) Hexavalent chromium reduction by Cellulomonas sp. strain ES6: the influence of carbon source, iron minerals, and electron shuttling compounds. Biodegradation 24(3):437–450CrossRefGoogle Scholar
  12. Fredrickson JK, Kostandarithes HM, Li SW, Plymale AE, Daly MJ (2000) Reduction of Fe(III), Cr(VI), U(VI), and Tc(VII) by deinococcus radiodurans R1. Appl Environ Microbiol 66(5):2006–2011CrossRefGoogle Scholar
  13. Fu F, Min H, Bing T, Han W, Cheng Z (2015) Removal of Cr(VI) from wastewater using acid-washed zero-valent iron catalyzed by polyoxometalate under acid conditions: efficacy, reaction mechanism and influencing factors. J Taiwan Inst Chem Eng 47:177–181CrossRefGoogle Scholar
  14. Geelhoed JS, Meeussen JCL, Roe MJ, Hillier S, Thomas RP, Farmer JG, Paterson E (2003) Chromium remediation or release? Effect of iron(II) sulfate addition on chromium(VI) leaching from columns of chromite ore processing residue. Environ Sci Technol 37(14):3206–3213CrossRefGoogle Scholar
  15. Hong Y, Wu P, Li W, Gu J, Duan S (2012) Humic analog AQDS and AQS as an electron mediator can enhance chromate reduction by Bacillus sp. strain 3C(3). Appl Microbiol Biotechnol 93(6):2661–2668CrossRefGoogle Scholar
  16. Jiang B, Gong YF, Gao JN, Sun T, Liu YJ, Oturan N, Oturan MA (2019) The reduction of Cr(VI) to Cr(III) mediated by environmentally relevant carboxylic acids: state-of-the-art and perspectives. J Hazard Mater 365:205–226CrossRefGoogle Scholar
  17. Kantar C, Cetin Z, Demiray H (2008) In situ stabilization of chromium(VI) in polluted soils using organic ligands: the role of galacturonic, glucuronic and alginic acids. J Hazard Mater 159(2–3):287–293CrossRefGoogle Scholar
  18. Li YY, Liang JL, Yang ZH, Wang H, Liu YS (2019) Reduction and immobilization of hexavalent chromium in chromite ore processing residue using amorphous FeS2. Sci Total Environ 658:315–323CrossRefGoogle Scholar
  19. Liu CX, Gorby YA, Zachara JM, Fredrickson JK, Brown CF (2002) ‘Reduction kinetics of Fe(III), Co(III), U(VI) Cr(VI) and Tc(VII) in cultures of dissimilatory metal-reducing bacteria’. Biotechnol Bioeng 80(6):637–649CrossRefGoogle Scholar
  20. Liu T, Li H, Li Z, Xiao X, Chen L, Deng L (2007) Removal of hexavalent chromium by fungal biomass of Mucor racemosus: influencing factors and removal mechanism. World J Microbiol Biotechnol 23(12):1685–1693CrossRefGoogle Scholar
  21. Liu R, Guo Y, Wang Z, Liu J (2014) Iron species in layered clay: efficient electron shuttles for simultaneous conversion of dyes and Cr(VI). Chemosphere 95(1):643–646CrossRefGoogle Scholar
  22. Liu TX, Li XM, Li FB, Han R, Wu YD, Yuan X, Wang Y (2016) In situ spectral kinetics of Cr(VI) reduction by c-type cytochromes in a suspension of living Shewanella putrefaciens 200. Sci Rep 6:11CrossRefGoogle Scholar
  23. Lloyd JR, Sole VA, Van Praagh CVG, Lovley DR (2000) Direct and Fe(II)-mediated reduction of technetium by Fe(III)-reducing bacteria. Appl Environ Microbiol 66(9):3743–3749CrossRefGoogle Scholar
  24. Lovley DR, Holmes DE, Nevin KP (2004) Dissimilatory Fe(III) and Mn(IV) reduction. In: Poole RK (ed) Advances in microbial physiology, vol. 49. Academic Press Ltd-Elsevier Science Ltd, London, pp 219–286Google Scholar
  25. Mandal B, Halder A, Sinha PK, Sen R, Mandal AK (2016) Investigation of iron redox ratio in zinc borate glass prepared in microwave heating and comparison with conventional glass. J Non-Cryst Solids 450:12–17CrossRefGoogle Scholar
  26. Middleton SS, Bencheikh-Latmani R, Mackey MR, Ellisman MH, Tebo BM, Criddle CS (2003) Cometabolism of Cr(VI) by Shewanella oneidensis MR-1 produces cell-associated reduced chromium and inhibits growth’. Biotechnol Bioeng 83(6):627–637CrossRefGoogle Scholar
  27. Mishra RR, Dhal B, Dutta SK, Dangar TK, Das NN, Thatoi HN (2012) Optimization and characterization of chromium(VI) reduction in saline condition by moderately halophilic Vigribacillus sp. isolated from mangrove soil of Bhitarkanika, India. J Hazard Mater 227:219–226CrossRefGoogle Scholar
  28. Myers CR, Carstens BP, Antholine WE, Myers JM (2000) Chromium(VI) reductase activity is associated with the cytoplasmic membrane of anaerobically grown Shewanella putrefaciens MR-1. J Appl Microbiol 88(1):98–106CrossRefGoogle Scholar
  29. Parker DL, Borer P, Bernier-Latmani R (2011) The response of Shewanella oneidensis MR-1 to Cr(III) toxicity differs from that to Cr(VI). Front Microbiol.  https://doi.org/10.3389/fmicb.2011.00223 CrossRefPubMedPubMedCentralGoogle Scholar
  30. Rebhi AEM, Lounici H, Lahrech MB, Morel JL (2019), Response of Artemisia herba alba to hexavalent chromium pollution under arid and semi-arid conditions. Int J Phytoremediat.  https://doi.org/10.1080/15226514.2018.1524841 CrossRefGoogle Scholar
  31. Saha B, Orvig C (2010) Biosorbents for hexavalent chromium elimination from industrial and municipal effluents. Coord Chem Rev 254(23):2959–2972CrossRefGoogle Scholar
  32. Schaefer JK, Rocks SS, Zheng W, Liang L, Gu B, Morel FMM (2011) Active transport, substrate specificity, and methylation of Hg(II) in anaerobic bacteria. Proc Natl Acad Sci USA 108(21):8714–8719CrossRefGoogle Scholar
  33. Tang YJ, Laidlaw D, Gani K, Keasling JD (2006) Evaluation of the effects of various culture conditions on Cr(VI) reduction by Shewanella oneidensis MR-1 in a novel high-throughput mini-bioreactor. Biotechnol Bioeng 95(1):176–184CrossRefGoogle Scholar
  34. Tian X, Wang W, Tian N, Zhou C, Yang C, Komarneni S (2016) Cr(VI) reduction and immobilization by novel carbonaceous modified magnetic Fe3O4/halloysite nanohybrid. J Hazard Mater 309:151–156CrossRefGoogle Scholar
  35. Vaiopoulou E, Gikas P (2012) Effects of chromium on activated sludge and on the performance of wastewater treatment plants: a review. Water Res 46(3):549–570CrossRefGoogle Scholar
  36. VanEngelen MR, Peyton BM, Mormile MR, Pinkart HC (2008) Fe(III), Cr(VI), and Fe(III) mediated Cr(VI) reduction in alkaline media using a Halomonas isolate from Soap Lake,Washington. Biodegradation 19(6):841–850CrossRefGoogle Scholar
  37. Wang J, Wu M, Lu G, Si Y (2016) Biotransformation and biomethylation of arsenic by Shewanella oneidensis MR-1. Chemosphere 145:329–335CrossRefGoogle Scholar
  38. Wang L, Xu S, Pan B, Yang Y (2017) Emerging investigator series: dual role of organic matter in the anaerobic degradation of triclosan. Environ Sci-Processes Impacts 19(4):499–506CrossRefGoogle Scholar
  39. Wielinga B, Mizuba MM, Hansel CM, Fendorf S (2001) Iron promoted reduction of chromate by dissimilatory iron-deducing bacteria. Environ Sci Technol 35(3):522–527CrossRefGoogle Scholar
  40. Xia S, Zhou L, Zhang Z, Hermanowicz SW (2015) Removal mechanism of low-concentration Cr (VI) in a submerged membrane bioreactor activated sludge system. Appl Microbiol Biotechnol 99(12):5351–5360CrossRefGoogle Scholar
  41. Yang L, Chen JP (2008) Biosorption of hexavalent chromium onto raw and chemically modified Sargassum sp. Bioresour Technol 99(2):297–307CrossRefGoogle Scholar
  42. Yuan Z, Li J, Cui L, Xu B, Zhang H, Yu C-P (2013) Interaction of silver nanoparticles with pure nitrifying bacteria. Chemosphere 90(4):1404–1411CrossRefGoogle Scholar
  43. Zhang YM, Chen J, Shi WL, Zhang DD, Zhu TT, Li XY (2017) Establishing a human health risk assessment methodology for metal species and its application of Cr6+ in groundwater environments. Chemosphere 189:525–537CrossRefGoogle Scholar
  44. Zhang L, Wu LL, Si YB, Shu KH (2018), Size-dependent cytotoxicity of silver nanoparticles to Azotobacter vinelandii: growth inhibition, cell injury, oxidative stress and internalization. PLoS ONE.  https://doi.org/10.1371/journal.pone.0209020 CrossRefPubMedPubMedCentralGoogle Scholar
  45. Zhao W, Zheng YM, Zou SW, Ting YP, Chen JP (2009) Effect of hexavalent chromium on performance of membrane bioreactor in wastewater treatment. J Environ Eng 135(9):796–805CrossRefGoogle Scholar
  46. Zhu WH, Yu D, Shi MR, Zhang YT, Huang TL (2017) Quinone-mediated microbial goethite reduction and transformation of redox mediator, anthraquinone-2,6-disulfonate (AQDS). Geomicrobiol J 34(1):27–36CrossRefGoogle Scholar

Copyright information

© Springer Nature B.V. 2019

Authors and Affiliations

  • Xiaohong Liu
    • 1
  • Gang Chu
    • 1
  • Yanying Du
    • 1
  • Jing Li
    • 1
  • Youbin Si
    • 1
    • 2
    Email author
  1. 1.Anhui Province Key Laboratory of Farmland Ecological Conservation and Pollution Prevention, School of Resources and EnvironmentAnhui Agricultural UniversityHefeiChina
  2. 2.Key Laboratory of Soil Environment and Pollution Remediation, Institute of Soil ScienceChinese Academy of SciencesNanjingChina

Personalised recommendations