Evaluation of different molecular and phenotypic methods for identification of environmental Burkholderia cepacia complex

  • João Pedro Rueda Furlan
  • André Pitondo-Silva
  • Vânia Santos Braz
  • Inara Fernanda Lage Gallo
  • Eliana Guedes StehlingEmail author
Original Paper


The correct identification of different genera and bacterial species is essential, especially when these bacteria cause infections and appropriate therapies need to be chosen. Bacteria belonging to the Burkholderia cepacia complex are considered important opportunistic pathogens, causing different types of infections in immunocompromised, principally in patients with cystic fibrosis. Twenty-one isolates were obtained from different soil samples and identified by sequencing of 16S rRNA, 23S rRNA, recA gene, MLST and by VITEK 2 and MALDI-TOF MS systems. Then, statistical analyses were performed. VITEK 2 and MALDI-TOF MS systems showed different bacterial genera. Sequencing of the 16S rRNA, 23S rRNA gene and amplification of recA gene showed that all the isolates belong to the B. cepacia complex. Sequencing of the recA gene showed a predominance of B. cenocepacia. The PCR of the recA gene showed a high specificity when it is necessary to identify the bacteria belonging to the B. cepacia complex in comparison with 16S and 23S rRNA genes sequencing. MLST analyzes showed a diversity of STs, which have not yet been correlated to the species. Phenotypic identification was not suitable for the identification of these pathogens since in many cases different genera have been reported, including identification by using MALDI-TOF MS.


Burkholderia cepacia complex 16S rRNA 23S rRNA recMLST MALDI-TOF MS 



This work was financially supported by São Paulo Research Foundation—FAPESP [Grant No. 2015/18990-2]. The authors also thank the Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES) for fellowship [Grant No. 88882.180855/2018-01].


  1. Abbott IJ, Peleg AY (2015) Stenotrophomonas, Achromobacter, and nonmelioid Burkholderia species: antimicrobial resistance and therapeutic strategies. Semin Respir Crit Care Med 36:99–110. CrossRefPubMedGoogle Scholar
  2. Bosshard PP, Zbinden R, Abels S, Böddinghaus B, Altwegg M, Böttger EC (2006) 16S rRNA gene sequencing versus the API 20 NE system and the VITEK 2 ID-GNB card for identification of nonfermenting gram-negative bacteria in the clinical laboratory. J Clin Microbiol 44:1359–1366. CrossRefPubMedPubMedCentralGoogle Scholar
  3. Chawla K, Vishwanath S, Munim FC (2013) Nonfermenting gram-negative Bacilli other than Pseudomonas aeruginosa and Acinetobacter spp. Causing respiratory tract infections in a tertiary care center. J Glob Infect Dis 5:144–148. CrossRefPubMedPubMedCentralGoogle Scholar
  4. Chiarini L, Bevivino A, Dalmastri C, Tabacchioni S, Visca P (2006) Burkholderia cepacia complex species: health hazards and biotechnological potential. Trends Microbiol 14:277–286. CrossRefPubMedGoogle Scholar
  5. De Smet B, Mayo M, Peeters C, Zlosnik JE, Spilker T, Hird TJ, LiPuma JJ, Kidd TJ, Kaestli M, Ginther JL, Wagner DM, Keim P, Bell SC, Jacobs JA, Currie BJ, Vandamme P (2015) Burkholderia stagnalis sp. nov. and Burkholderia territorii sp. nov., two novel Burkholderia cepacia complex species from environmental and human sources. Int J Syst Evol Microbiol 65:2265–2271. CrossRefPubMedGoogle Scholar
  6. Eisen JA (1995) The RecA protein as a model molecule for systematic studies of bacteria: comparison of trees of RecAs and 16S rRNAs from the same species. J Mol Evol 41:1105–1123. CrossRefPubMedPubMedCentralGoogle Scholar
  7. Febbraro F, Rodio DM, Antonelli GPG, Pietropaolo V, Trancassini M (2016) MALDI-TOF MS versus VITEK®2: comparison of systems for the identification of microorganisms responsible for bacteremia. Curr Microbiol 73:843–850. CrossRefPubMedPubMedCentralGoogle Scholar
  8. Fehlberg LC, Andrade LH, Assis DM, Pereira RH, Gales AC, Marques EA (2013) Performance of MALDI-ToF MS for species identification of Burkholderia cepacia complex clinical isolates. Diagn Microbiol Infect Dis 77:126–128CrossRefGoogle Scholar
  9. Gilling DH, Luna VA, Pflugradt C (2014) The Identification and differentiation between Burkholderia mallei and Burkholderia pseudomallei using one gene pyrosequencing. Int Sch Res Notices 2014:109583. CrossRefPubMedPubMedCentralGoogle Scholar
  10. Guo L, Ye L, Zhao Q, Ma Y, Yang J, Luo Y (2014) Comparative study of MALDI-TOF MS and VITEK 2 in bacteria identification. J Thorac Dis 6:534–538. CrossRefPubMedPubMedCentralGoogle Scholar
  11. He Y, Guo X, Xiang S, Li J, Li X, Xiang H, He J, Chen D, Chen J (2016) Comparative analyses of phenotypic methods and 16S rRNA, khe, rpoB genes sequencing for identification of clinical isolates of Klebsiella pneumoniae. Antonie Van Leeuwenhoek 109:1029–1040. CrossRefPubMedGoogle Scholar
  12. Hunt DE, Klepac-Ceraj V, Acinas SG, Gautier C, Bertilsson S, Polz MF (2006) Evaluation of 23S rRNA PCR primers for use in phylogenetic studies of bacterial diversity. Appl Environ Microbiol 72:2221–2225. CrossRefPubMedPubMedCentralGoogle Scholar
  13. Karlin S, Weinstock GM, Brendel V (1995) Bacterial classifications derived from RecA protein sequence comparisons. J Bacteriol 177:6881–6893CrossRefGoogle Scholar
  14. Landis JR, Koch GG (1977) The measurement of observer agreement for categorical data. Biometrics 33:159–174CrossRefGoogle Scholar
  15. Leitão JH, Sousa SA, Cunha MV, Salgado MJ, Melo-Cristino J, Barreto MC, Sá-Correia I (2008) Variation of the antimicrobial susceptibility profiles of Burkholderia cepacia complex clonal isolates obtained from chronically infected cystic fibrosis patients: a five-year survey in the major Portuguese treatment center. Eur J Clin Microbiol Infect Dis 27:1101–1111. CrossRefPubMedGoogle Scholar
  16. Lipuma JJ (2010) The changing microbial epidemiology in cystic fibrosis. Clin Microbiol Rev 23:299–323. CrossRefPubMedPubMedCentralGoogle Scholar
  17. Mahenthiralingam E, Bischof J, Byrne SK, Radomski C, Davies JE, Av-Gay Y, Vandamme P (2000) DNA-based diagnostic approaches for identification of Burkholderia cepacia complex, Burkholderia vietnamiensis, Burkholderia multivorans, Burkholderia stabilis, and Burkholderia cepacia genomovars I and III. J Clin Microbiol 38:3165–3173PubMedPubMedCentralGoogle Scholar
  18. Malini A, Deepa EK, Gokul BN, Prasad SR (2009) Nonfermenting gram-negative bacilli infections in a Tertiary Care Hospital in Kolar. Karnataka J Lab Physicians 1:62–66. CrossRefPubMedGoogle Scholar
  19. Martina P, Leguizamon M, Prieto CI, Sousa SA et al (2018) Burkholderia puraquae sp. nov., a novel species of the Burkholderia cepacia complex isolated from hospital settings and agricultural soils. Int J Syst Evol Microbiol 68:14–20. CrossRefPubMedGoogle Scholar
  20. McDowell A, Mahenthiralingam E, Moore JE, Dunbar KE, Webb AK, Dodd ME, Martin SL, Millar BC, Scott CJ, Crowe M, Elborn JS (2001) PCR-based detection and identification of Burkholderia cepacia complex pathogens in sputum from cystic fibrosis patients. J Clin Microbiol 39:4247–4255. CrossRefPubMedPubMedCentralGoogle Scholar
  21. Mukherjee K, Tribedi P, Chowdhury A, Ray T, Joardar A, Giri S, Sil AK (2011) Isolation of a Pseudomonas aeruginosa strain from soil that can degrade polyurethane diol. Biodegradation 22:377–388. CrossRefPubMedGoogle Scholar
  22. Navrátilová L, Chromá M, Hanulík V, Raclavský V (2013) Possibilities in identification of genomic species of Burkholderia cepacia complex by PCR and RFLP. Pol J Microbiol 62:373–376PubMedGoogle Scholar
  23. Payne GW, Vandamme P, Morgan SH, Lipuma JJ, Coenye T, Weightman AJ, Jones TH, Mahenthiralingam E (2005) Development of a recA gene-based identification approach for the entire Burkholderia genus. Appl Environ Microbiol 71:3917–3927. CrossRefPubMedPubMedCentralGoogle Scholar
  24. Peeters C, Zlosnik JE, Spilker T, Hird TJ, LiPuma JJ, Vandamme P (2013) Burkholderia pseudomultivorans sp. nov., a novel Burkholderia cepacia complex species from human respiratory samples and the rhizosphere. Syst Appl Microbiol 36:483–489. CrossRefPubMedGoogle Scholar
  25. Sousa SA, Ramos CG, Leitão JH (2010) Burkholderia cepacia complex: emerging multihost pathogens equipped with a wide range of virulence factors and determinants. Int J Microbiol 2011:607575. CrossRefPubMedPubMedCentralGoogle Scholar
  26. Spilker T, Baldwin A, Bumford A, Dowson CG, Mahenthiralingam E, LiPuma JJ (2009) Expanded multilocus sequence typing for Burkholderia species. J Clin Microbiol 47:2607–2610. CrossRefPubMedPubMedCentralGoogle Scholar
  27. Uehlinger S, Schwager S, Bernier SP, Riedel K, Nguyen DT, Sokol PA, Eberl L (2009) Identification of specific and universal virulence factors in Burkholderia cenocepacia strains by using multiple infection hosts. Infect Immun 77:4102–4110. CrossRefPubMedPubMedCentralGoogle Scholar
  28. Vandamme P, Dawyndt P (2011) Classification and identification of the Burkholderia cepacia complex: past, present, and future. Syst Appl Microbiol 34:87–95. CrossRefPubMedGoogle Scholar
  29. Vicenz FJ, Pillonetto M, Souza HA, Palmeiro JK, Riedi CA, Rosario-Filho NA, Dalla-Costa LM (2016) Polyphasic characterisation of Burkholderia cepacia complex species isolated from children with cystic fibrosis. Mem Inst Oswaldo Cruz 111:37–42. CrossRefGoogle Scholar
  30. Weisburg WG, Barns SM. Pelletier BA, Lane DJ (1991) 16S ribosomal DNA amplification for phylogenetic study. J Bacteriol 173:697–703CrossRefGoogle Scholar

Copyright information

© Springer Nature B.V. 2019

Authors and Affiliations

  1. 1.Department of Clinical Analysis, Toxicology and Food Science, School of Pharmaceutical Sciences of Ribeirão PretoUniversity of São Paulo (USP)Ribeirão PretoBrazil
  2. 2.School of DentistryUniversity of Ribeirao Preto (UNAERP)Ribeirão PretoBrazil

Personalised recommendations