Genome sequencing and traits analysis of Burkholderia strains reveal a promising biocontrol effect against grey mould disease in grapevine (Vitis vinifera L.)

  • Qassim EsmaeelEmail author
  • Cédric Jacquard
  • Christophe Clément
  • Lisa Sanchez
  • Essaid Ait BarkaEmail author
Original Paper


Grey mould caused by Botrytis cinerea is among the most important disease affecting the production of grapevine worldwide. The high economical loss each year has led producers to become more dependent on chemical pesticides for protection. However, environmental impacts of the pesticides overuse have sparked crescent interest in developing alternative biocontrol methods. The use of plant-associated bacteria has, thus, received many attentions as a promising strategy for sustainable agriculture. Three strains, isolated from the rhizosphere of crops cultivated in the northeast of France, were evaluated for their antagonistic effect. They were found to exhibit an antagonistic effect against a set of phytopathogenic fungi. Phenotypic and molecular characterization showed that isolates belong to the genus Burkholderia. The genome sequencing and analysis of isolated strains revealed the presence of gene clusters coding for secondary metabolites potentially involved in the biocontrol. When the grapevine plantlets were infected with B. cinerea, all plants associated with isolated strains showed a significant protection against B. cinerea compared to non-inoculated plants. To understand the mechanisms contributing to the biocontrol effect of selected isolates, the production of reactive oxygen species (ROS) and the expression of several defense genes were investigated. The maximum accumulation of H2O2 was detected in the inoculated cell suspension medium 30 min after the challenge with B. cinerea. After pathogen challenge, results showed that grapevine cell culture inoculated with isolated strains exhibited significant over expression of defense markers genes PR5, PR10, and chit4c, in response to B. cinerea, confirming their priming effect.


Biocontrol Burkholderia Grey mould Grapevine Rhizosphere 



This work was supported by the University of Reims Champagne-Ardenne. We gratefully acknowledge the financial support provided by the Region Grand Est. Authors would like to thank the European Union funding through the INTERREG V (France Wallonie Flandre) a SmartBioControl project (BioScreen project). The authors are very grateful to Prof. M. Höfte, (Faculty of Bioscience Engineering, Ghent University, Belgium), Dr. S. Selim (Unité derecherche HydrISE, Institut Polytechnique UniLaSalle, Beauvais, France), and Dr. Y. Brygoo (INRA, Versailles, France) who kindly provided fungal strains.

Compliance with ethical standards

Conflict of interest

The authors declare that they have no conflict of interest.

Ethical approval

This article does not contain any studies with human participants or animals performed by any of the authors.

Supplementary material

11274_2019_2613_MOESM1_ESM.pdf (875 kb)
Supplementary material 1 (PDF 874 KB)


  1. Ait Barka E, Belarbi A, Hachet C, Nowak J, Audran J-C (2000) Enhancement of in vitro growth and resistance to gray mould of Vitis vinifera co-cultured with plant growth-promoting rhizobacteria. FEMS Microbiol Lett 186:91–95CrossRefGoogle Scholar
  2. Ait Barka E, Gognies S, Nowak J, Audran J-C, Belarbi A (2002) Inhibitory effect of endophyte bacteria on Botrytis cinerea and its influence to promote the grapevine growth. Biol Control 24:135–142. CrossRefGoogle Scholar
  3. Ait Barka E, Nowak J, Clément C (2006) Enhancement of chilling resistance of inoculated grapevine plantlets with a plant growth-promoting rhizobacterium, Burkholderia phytofirmans strain PsJN. Appl Environ Microbiol 72:7246–7252. CrossRefPubMedPubMedCentralGoogle Scholar
  4. Andreolli M, Lampis S, Zapparoli G, Angelini E, Vallini G (2016) Diversity of bacterial endophytes in 3 and 15 year-old grapevines of Vitis vinifera cv. Corvina and their potential for plant growth promotion and phytopathogen control. Microbiol Res 183:42–52. CrossRefPubMedGoogle Scholar
  5. Aziz RK, Bartels D, Best AA, DeJongh M, Disz T, Edwards RA, Formsma K, Gerdes S, Glass EM, Kubal M (2008) The RAST Server: rapid annotations using subsystems technology. BMC Genom 9:75. CrossRefGoogle Scholar
  6. Bordiec S, Paquis S, Lacroix H, Dhondt S, Ait Barka E, Kauffmann S, Jeandet P, Mazeyrat-Gourbeyre F, Clément C, Baillieul F, Dorey S (2011) Comparative analysis of defence responses induced by the endophytic plant growth-promoting rhizobacterium Burkholderia phytofirmans strain PsJN and the non-host bacterium Pseudomonas syringae pv. pisi in grapevine cell suspensions. J Exp Bot 62:595–603. CrossRefPubMedGoogle Scholar
  7. Boubakri H, Wahab MA, Chong J, Bertsch C, Mliki A, Soustre-Gacougnolle I (2012) Thiamine induced resistance to Plasmopara viticola in grapevine and elicited host–defense responses, including HR like-cell death. Plant Physiol Biochem 57:120–133. CrossRefPubMedGoogle Scholar
  8. Caballero-Mellado J, Onofre-Lemus J, Estrada-De Los Santos P, Martínez-Aguilar L (2007) The tomato rhizosphere, an environment rich in nitrogen-fixing Burkholderia species with capabilities of interest for agriculture and bioremediation. Appl Environ Microbiol 73:5308–5319CrossRefGoogle Scholar
  9. Cilindre C, Castro AJ, Clément C, Jeandet P, Marchal R (2007) Influence of Botrytis cinerea infection on Champagne wine proteins (characterized by two-dimensional electrophoresis/immunodetection) and wine foaming properties. Food Biochem 103(1):139–149. CrossRefGoogle Scholar
  10. Compant S, Reiter B, Sessitsch A, Nowak J, Clément C, Barka EA (2005) Endophytic colonization of Vitis vinifera L. by plant growth-promoting bacterium Burkholderia sp. strain PsJN. Appl Environ Microbiol 71:1685–1693CrossRefGoogle Scholar
  11. Compant S, Nowak J, Coenye T, Clément C, Ait Barka E (2008) Diversity and occurrence of Burkholderia spp. in the natural environment. FEMS Microbiol Rev 32:607–626. CrossRefPubMedGoogle Scholar
  12. de Campos SB, Lardi M, Gandolfi A, Eberl L, Pessi G (2017) Mutations in two Paraburkholderia phymatum type VI secretion systems cause reduced fitness in interbacterial competition. Front Microbiol 8:2473. CrossRefPubMedPubMedCentralGoogle Scholar
  13. Depoorter E, Bull MJ, Peeters C, Coenye T, Vandamme P, Mahenthiralingam E (2016) Burkholderia: an update on taxonomy and biotechnological potential as antibiotic producers. Appl Microbiol Biotechnol 100:5215–5229. CrossRefPubMedGoogle Scholar
  14. Disz T, Akhter S, Cuevas D, Olson R, Overbeek R, Vonstein V, Stevens R, Edwards RA (2010) Accessing the SEED genome databases via Web services API: tools for programmers. BMC Bioinf 11:319. CrossRefGoogle Scholar
  15. Eberl L, Vandamme P (2016) Members of the genus Burkholderia: good and bad guys. F1000 Res 5:1007. CrossRefGoogle Scholar
  16. Elad Y (1994) Biological control of grape grey mould by Trichoderma harzianum. Crop Prot 13:35–38. CrossRefGoogle Scholar
  17. Esmaeel Q, Chevalier M, Chataigné G, Subashkumar R, Jacques P, Leclère V (2016a) Nonribosomal peptide synthetase with a unique iterative-alternative-optional mechanism catalyzes amonabactin synthesis in Aeromonas. Appl Microbiol Biotechnol 100:8453–8463. CrossRefPubMedGoogle Scholar
  18. Esmaeel Q, Pupin M, Kieu NP, Chataigné G, Béchet M, Deravel J, Krier F, Höfte M, Jacques P, Leclère V (2016b) Burkholderia genome mining for nonribosomal peptide synthetases reveals a great potential for novel siderophores and lipopeptides synthesis. Microbiol Open 5:512–526. CrossRefGoogle Scholar
  19. Esmaeel Q, Pupin M, Jacques P, Leclère V (2017) Nonribosomal peptides and polyketides of Burkholderia: new compounds potentially implicated in biocontrol and pharmaceuticals. Environ Sci Pollut Res 25:29794–29807. CrossRefGoogle Scholar
  20. Esmaeel Q, Miotto L, Rondeau M, Leclère V, Clément C, Jacquard C, Sanchez L, Barka EA (2018a) Paraburkholderia phytofirmans PsJN-plants interaction: from perception to the induced mechanisms. Front Microbiol 9:2093. CrossRefPubMedPubMedCentralGoogle Scholar
  21. Esmaeel Q, Sanchez L, Robineau M, Dorey S, Clément C, Jacquard C, Barka EA (2018b) Draft genome sequence of plant growth-promoting Burkholderia sp. strain BE12, isolated from the rhizosphere of maize. Genome Announc 6:e00299–e00218. CrossRefPubMedPubMedCentralGoogle Scholar
  22. Felsenstein J (1985) Confidence limits on phylogenies: an approach using the bootstrap. Evolution 39:783–791CrossRefGoogle Scholar
  23. Groenhagen U, Baumgartner R, Bailly A, Gardiner A, Eberl L, Schulz S, Weisskopf L (2013) Production of bioactive volatiles by different Burkholderia ambifaria strains. J Chem Ecol 39:892–906. CrossRefPubMedGoogle Scholar
  24. Gruau C, Trotel-Aziz P, Villaume S, Rabenoelina F, Clément C, Baillieul F, Aziz A (2015) Pseudomonas fluorescens PTA-CT2 triggerslocal and systemicimmune response against Botrytis cinerea in grapevine. Mol Plant-Microbe Interact 28:1117–1129. CrossRefPubMedGoogle Scholar
  25. Issa A, Esmaeel Q, Sanchez L, Courteaux B, Gibon Y, Clément C, Ballias P, Jacquard C, Vaillant-Gaveau N, Ait Barka E (2018) Impacts of Paraburkholderia phytofirmans strain PsJN on Tomato (Lycopersicon esculentum L.) under high temperature. Front Plant Sci 9:1397. CrossRefPubMedPubMedCentralGoogle Scholar
  26. Kim S, Lowman S, Hou G, Nowak J, Flinn B, Mei C (2012) Growth promotion and colonization of switchgrass (Panicum virgatum) cv. Alamo by bacterial endophyte Burkholderia phytofirmans strain PsJN. Biotechnol Biofuels 5:37. CrossRefPubMedPubMedCentralGoogle Scholar
  27. Kloepper JW, Ryu C-M, Zhang S (2004) Induced systemic resistance and promotion of plant growth by Bacillus spp. Phytopathology 94:1259–1266. CrossRefPubMedGoogle Scholar
  28. Kost T, Stopnisek N, Agnoli K, Eberl L, Weisskopf L (2013) Oxalotrophy, a widespread trait of plant-associated Burkholderia species, is involved in successful root colonization of lupin and maize by Burkholderia phytofirmans. Front Microbiol 4:421. CrossRefGoogle Scholar
  29. Lin Z, Falkinham JO, Tawfik KA, Jeffs P, Bray B, Dubay G, Cox JE, Schmidt EW (2012) Burkholdines from Burkholderia ambifaria: antifungal agents and possible virulence factors. J Nat Prod 75:1518–1523. CrossRefPubMedGoogle Scholar
  30. Loqman S, Barka EA, Clément C, Ouhdouch Y (2009) Antagonistic Actinomycetes from Moroccan soil to control the grapevine gray mold. World J Microbiol Biotechnol 25:81–91. CrossRefGoogle Scholar
  31. Miotto-Vilanova L, Jacquard C, Courteaux B, Wortham L, Michel J, Clément C, Barka EA, Sanchez L (2016) Burkholderia phytofirmans PsJN confers grapevine resistance against Botrytis cinerea via a direct antimicrobial effect combined with a better resource mobilization. Front Plant Sci 7:1236. CrossRefPubMedPubMedCentralGoogle Scholar
  32. Nautiyal CS (1999) An efficient microbiological growth medium for screening phosphate solubilizing microorganisms. FEMS Microbiol Lett 170:265–270CrossRefGoogle Scholar
  33. OIV (2018) International organisation of vine and wine. Statistical report on world vitiviniculture 2018.
  34. Parke JL, Gurian-Sherman D (2001) Diversity of the Burkholderia cepacia complex and implications for risk assessment of biological control strains. Annu Rev Phytopathol 39:225–258CrossRefGoogle Scholar
  35. Paungfoo-Lonhienne C, Lonhienne TG, Yeoh YK, Webb RI, Lakshmanan P, Chan CX, Lim PE, Ragan MA, Schmidt S, Hugenholtz P (2014) A new species of Burkholderia isolated from sugarcane roots promotes plant growth. Microb Biotechnol 7(2):142–154. CrossRefPubMedGoogle Scholar
  36. Rabhi NEH, Silini A, Cherif-Silini H, Yahiaoui B, Lekired A, Robineau M, Esmaeel Q, Jacquard C, Vaillant-Gaveau N, Clément C, Aït Barka E, Sanchez L (2018) Pseudomonas knackmussii MLR6, a rhizospheric strain isolated from halophyte, enhances salt tolerance in Arabidopsis thaliana. J Appl Microbiol. CrossRefPubMedGoogle Scholar
  37. Ramette A, LiPuma JJ, Tiedje JM (2005) Species abundance and diversity of Burkholderia cepacia complex in the environment. Appl Environ Microbiol 71:1193–1201. CrossRefPubMedPubMedCentralGoogle Scholar
  38. Rupp S, Weber RWS, Rieger D, Detzel P, Hahn M (2016) Spread of Botrytis cinerea strains with multiple fungicide resistance in German horticulture. Front Microbiol 7:2075. CrossRefPubMedGoogle Scholar
  39. Saitou N, Nei M (1987) The neighbor-joining method: a new method for reconstructing phylogenetic trees. Mol Biol Evol 4:406–425PubMedPubMedCentralGoogle Scholar
  40. Sawana A, Adeolu M, Gupta RS (2014) Molecular signatures and phylogenomic analysis of the genus Burkholderia: proposal for division of this genus into the emended genus Burkholderia containing pathogenic organisms and a new genus Paraburkholderia gen. nov. harboring environmental species. Front Genet 5:429. CrossRefPubMedPubMedCentralGoogle Scholar
  41. Schmidt S, Blom JF, Pernthaler J, Berg G, Baldwin A, Mahenthiralingam E, Eberl L (2009) Production of the antifungal compound pyrrolnitrin is quorum sensing-regulated in members of the Burkholderia cepacia complex. Environ Microbiol 11:1422–1437. CrossRefPubMedGoogle Scholar
  42. Simonetti E, Roberts IN, Montecchia MS, Gutierrez-Boem FH, Gomez FM, Ruiz JA (2018) A novel Burkholderia ambifaria strain able to degrade the mycotoxin fusaric acid and to inhibit Fusarium spp. growth. Microbiol Res 206:50–59. CrossRefPubMedGoogle Scholar
  43. Talbi C, Delgado M, Girard L, Ramirez-Trujillo A, Caballero-Mellado J, Bedmar E (2010) Burkholderia phymatum strains capable of nodulating Phaseolus vulgaris are present in Moroccan soils. Appl Environ Microbiol 76:4587–4591. CrossRefPubMedPubMedCentralGoogle Scholar
  44. Tamura K, Nei M, Kumar S (2004) Prospects for inferring very large phylogenies by using the neighbor-joining method. Proc Natl Acad Sci USA 101(30):11030–11035. CrossRefPubMedGoogle Scholar
  45. Tamura K, Stecher G, Peterson D, Filipski A, Kumar S (2013) MEGA6: Molecular evolutionary genetics analysis version 6.0. Mol Biol Evol 30:2725–2729. CrossRefPubMedPubMedCentralGoogle Scholar
  46. Van VT, Berge O, Ke SN, Balandreau J, Heulin T (2000) Repeated beneficial effects of rice inoculation with a strain of Burkholderia vietnamiensis on early and late yield components in low fertility sulphate acid soils of Vietnam. Plant Soil 218:273–284CrossRefGoogle Scholar
  47. Varnier A-L, Sanchez L, Vatsa P, Boudesocque L, GARCIA-BRUGGER A, Rabenoelina F, Sorokin A, RENAULT JH, Kauffmann S, Pugin A (2009) Bacterial rhamnolipids are novel MAMPs conferring resistance to Botrytis cinerea in grapevine. Plant Cell Environ 32:178–193. CrossRefPubMedGoogle Scholar
  48. Vial L, Groleau M-C, Dekimpe V, Deziel E (2007) Burkholderia diversity and versatility: an inventory of the extracellular products. J Microbiol Biotechnol 17:1407–1429PubMedGoogle Scholar
  49. Viallard V, Poirier I, Cournoyer B, Haurat J, Wiebkin S, Ophel-Keller K, Balandreau J (1998) Burkholderia graminis sp. nov., a rhizospheric Burkholderia species, and reassessment of [Pseudomonas] phenazinium, [Pseudomonas] pyrrocinia and [Pseudomonas] glathei as Burkholderia. Int J Syst Evol Microbiol 48:549–563. CrossRefGoogle Scholar
  50. Weber T, Blin K, Duddela S, Krug D, Kim HU, Bruccoleri R, Lee SY, Fischbach MA, Müller R, Wohlleben W (2015) antiSMASH 3.0—a comprehensive resource for the genome mining of biosynthetic gene clusters. Nucleic Acids Res 43:W237–W243. CrossRefPubMedPubMedCentralGoogle Scholar
  51. Wood DE, Salzberg SL (2014) Kraken: ultrafast metagenomic sequence classification using exact alignments. Genome Biol 15(3):R46. CrossRefPubMedPubMedCentralGoogle Scholar
  52. Yang J, Kloepper JW, Ryu C-M (2009) Rhizosphere bacteria help plants tolerate abiotic stress. Trends Plant Sci 14:1–4. CrossRefPubMedGoogle Scholar

Copyright information

© Springer Nature B.V. 2019

Authors and Affiliations

  1. 1.Unité de Recherche Résistance Induite et BioProtection des Plantes, UFR Sciences Exactes et NaturellesSFR Condorcet FR CNRS 3417, Université de Reims-Champagne-ArdenneReims Cedex 2France

Personalised recommendations