Biological aspects and biotechnological potential of marine diatoms in relation to different light regimens

  • Costanza Baldisserotto
  • Alessandra Sabia
  • Lorenzo Ferroni
  • Simonetta PancaldiEmail author


As major primary producers in marine environments, diatoms are considered a valuable feedstock of biologically active compounds for application in several biotechnological fields. Due to their metabolic plasticity, especially for light perception and use and in order to make microalgal production more environmentally sustainable, marine diatoms are considered good candidates for the large-scale cultivation. Among physical parameters, light plays a primary role. Even if sunlight is cost-effective, the employment of artificial light becomes a winning strategy if a high-value microalgal biomass is produced. Several researches on marine diatoms are designed to study the influence of different light regimens to increase biomass production enriched in biotechnologically high-value compounds (lipids, carotenoids, proteins, polysaccharides), or with emphasised photonic properties of the frustule.


Biotechnological application Cultivation methods Light Marine diatoms 



This work was financially supported by the University of Ferrara, Italy.


  1. Allen JF, Forsberg J (2001) Molecular recognition in thylakoid structure and function. Trends Plant Sci 6:317–326PubMedGoogle Scholar
  2. Armbrust EV (2009) The life of diatoms in the world’s oceans. Nature 459:185–192PubMedGoogle Scholar
  3. Armbrust EV, Berges JA, Bowler C, Green BR, Martinez D, Putnam NH, Shiguo Z et al (2004) The genome of the diatom Thalassiosira pseudonana: ecology, evolution, and metabolism. Science 306:79–86PubMedGoogle Scholar
  4. Baldisserotto C, Giovanardi M, Ferroni L, Pancaldi S (2014) Growth, morphology and photosynthetic responses of Neochloris oleoabundans during cultivation in a mixotrophic brackish medium and subsequent starvation. Acta Physiol Plant 36:461–472Google Scholar
  5. Baldisserotto C, Popovich C, Giovanardi M, Sabia A, Ferroni L, Constenla D, Leonardi P, Pancaldi S (2016) Photosynthetic aspects and lipid profiles in the mixotrophic alga Neochloris oleoabundans as useful parameters for biodiesel production. Algal Res 16:255–265Google Scholar
  6. Barragán C, Wetzel CE, Ector L (2018) A standard method for the routine sampling of terrestrial diatom communities for soil quality assessment. J App Phycol 30:1095–1113Google Scholar
  7. Barsanti L, Gualtieri P (2014) Photosynthesis. In: Algae—anatomy, biochemistry, and biotechnology. 2nd edn, CrC Press, Boca Raton, pp 141–172Google Scholar
  8. Bates SS, Trainer VL (2006) The ecology of harmful diatoms. In: Ecology of harmful algae. Springer, Berlin, pp 81–93Google Scholar
  9. Bismuto A, Setaro A, Maddalena P, Stefano LD, Stefano MD (2008) Marine diatoms as optical chemical sensors: a time-resolved study. Sens Actuators B Chem 130:396–399Google Scholar
  10. Borowitzka MA (1995) Microalgae as sources of pharmaceuticals and other biologically active compounds. J Appl Phycol 7:3–15Google Scholar
  11. Borowitzka MA, Moheimani NR (2013) Sustainable biofuels from algae. Mitig Adapt Strateg Glob Change 18:13–25Google Scholar
  12. Bowler C, Allen AE, Badger JH, Grimwood J, Jabbari K, Kuo A, Maheswari U et al (2008) The Phaeodactylum genome reveals the evolutionary history of diatom genomes. Nature 456:239–244PubMedGoogle Scholar
  13. Bozarth A, Maier UG, Zauner S (2009) Diatoms in biotechnology: modern tools and applications. Appl Microbiol Biotechnol 82:195–201PubMedGoogle Scholar
  14. Brunet C, Lavaud J (2010) Can the xanthophyll cycle help extract the essence of the microalgal functional response to a variable light environment? J Plankton Res 32:1609–1617Google Scholar
  15. Burki F, Shalchian-Tabrizi K, Minge M, Skjæveland Å, Nikolaev SI, Jakobsen KS, Pawlowski J (2007) Phylogenomics reshuffles the eukaryotic supergroups. PLoS ONE 2:e790PubMedPubMedCentralGoogle Scholar
  16. Caron L, Berkaloff C, Duval J-C, Jupin H (1987) Chlorophyll fluorescence transients from the diatom Phaeodactylum tricornutum: relative rates of cyclic phosphorylation and chlororespiration. Photosynth Res 11:131–139PubMedGoogle Scholar
  17. Cavalier-Smith T (2018) Kingdom chromista and its eight phyla: a new synthesis emphasising periplastid protein targeting, cytoskeletal and periplastid evolution, and ancient divergences. Protoplasma 255:297–357PubMedGoogle Scholar
  18. Chandrasekaran R, Barra L, Carillo S, Caruso T, Corsaro MM, Dal Piaz F, Graziani G et al (2014) Light modulation of biomass and macromolecular composition of the diatom Skeletonema marinoi. J Biotechnol 192:114–122PubMedGoogle Scholar
  19. Chen YC (2012) The biomass and total lipid content and composition of twelve species of marine diatoms cultured under various environments. Food Chem 131:211–219Google Scholar
  20. Chen CY, Yeh KL, Aisyah R, Lee DJ, Chang JS (2011) Cultivation, photobioreactor design and harvesting of microalgae for biodiesel production: a critical review. Bioresour Technol 102:71–81PubMedGoogle Scholar
  21. Clavero E, Hernández-Mariné M, Grimalt JO, Garcia-Pichel F (2000) Salinity tolerance of diatoms from thalassic hypersaline environments. J Phycol 36:1021–1034Google Scholar
  22. d’Ippolito G, Sardo A, Paris D, Vella FM, Adelfi MG, Botte P, Gallo C, Fontana A (2015) Potential of lipid metabolism in marine diatoms for biofuel production. Biotechnol Biofuels 8:1–28Google Scholar
  23. Daboussi F, Leduc S, Maréchal A, Dubois G, Guyot V, Perez-Michaut C, Voytas DF (2014) Genome engineering empowers the diatom Phaeodactylum tricornutum for biotechnology. Nat Commun 5:3831PubMedGoogle Scholar
  24. del Pilar Sánchez-Saavedra M, Maeda-Martínez AN, Acosta-Galindo S (2016) Effect of different light spectra on the growth and biochemical composition of Tisochrysis lutea. J Appl Phycol 28:839–847Google Scholar
  25. Delattre C, Pierre G, Laroche C, Michaud P (2016) Production, extraction and characterization of microalgal and cyanobacterial exopolysaccharides. Biotechnol Adv 34:1159–1179PubMedGoogle Scholar
  26. Depauw FA, Rogato A, Ribera d’Alcalá M, Falciatore A (2012) Exploring the molecular basis of responses to light in marine diatoms. J Exp Bot 63:1575–1591PubMedGoogle Scholar
  27. Dong HP, Dong YL, Cui L, Balamurugan S, Gao J, Lu SH, Jiang T (2016) High light stress triggers distinct proteomic responses in the marine diatom Thalassiosira pseudonana. BMC Genom 17:994Google Scholar
  28. Eberhard S, Finazzi G, Wollman FA (2008) The dynamics of photosynthesis. Annu Rev Genet 42:463–515PubMedGoogle Scholar
  29. Field CB, Behrenfeld MJ, Randerson JT, Falkowski P (1998) Primary production of the biosphere: integrating terrestrial and oceanic components. Science 281:237–240PubMedGoogle Scholar
  30. Flori S, Jouneau PH, Bailleul B, Gallet B, Estrozi LF, Moriscot C, Bastien O et al (2017) Plastid thylakoid architecture optimizes photosynthesis in diatoms. Nat Commun 8:15885PubMedPubMedCentralGoogle Scholar
  31. Fortunato AE, Jaubert M, Enomoto G, Bouly JP, Raniello R, Thaler M, Carbone A et al (2016) Diatom phytochromes reveal the existence of far-red light based sensing in the ocean. Plant Cell 28:616–628PubMedPubMedCentralGoogle Scholar
  32. Frenkel J, Wess C, Vyverman W, Pohnert G (2014) Chiral separation of a diketopiperazine pheromone from marine diatoms using supercritical fluid chromatography. J Chromatogr B 951:58–61Google Scholar
  33. Fu W, Wichuk K, Brynjólfsson S (2015) Developing diatoms for value-added products: challenges and opportunities. New Biotechnol 32:547–551Google Scholar
  34. Giovanardi M, Ferroni L, Baldisserotto C, Tedeschi P, Maietti A, Pantaleoni L, Pancaldi S (2013) Morpho-physiological analyses of Neochloris oleoabundans (Chlorophyta) grown mixotrophically in a carbon-rich waste product. Protoplasma 250:161–174PubMedGoogle Scholar
  35. Granum E, Raven JA, Leegood RC (2005) How do marine diatoms fix 10 billion tonnes of inorganic carbon per year? J Bot 83:898–908Google Scholar
  36. Grouneva I, Rokka A, Aro E-M (2011) Thylakoid membrane proteome of two marine diatoms outlines both diatom-specific and species-specific features of the photosynthetic machinery. J Proteome Res 10:5338–5353PubMedGoogle Scholar
  37. Guo B, Liu B, Yang B, Sun P, Lu X, Liu J, Chen F (2016) Screening of diatom strains and characterization of Cyclotella cryptica as a potential fucoxanthin producer. Mar Drugs 14:125PubMedCentralGoogle Scholar
  38. Harun R, Singh M, Forde GM, Danquah MK (2010) Bioprocess engineering of microalgae to produce a variety of consumer products. Renew Sust Energy Rev 14:1037–1047Google Scholar
  39. Hempel F, Bozarth AS, Lindenkamp N, Klingl A, Zauner S, Linne U, Steinbuchel A, Maier UG (2011) Microalgae as bioreactors for bioplastic production. Microbial Cell Fact 10:81Google Scholar
  40. Hildebrand D, Smith SR, Traller JC, Abbriano R (2012) The place of diatoms in the biofuels industry. Biofuels 3:221–240Google Scholar
  41. Hopes A, Nekrasov V, Kamoun S, Mock T (2016) Editing of the urease gene by CRISPR-Cas in the diatom Thalassiosira pseudonana. Plant Methods 12:49PubMedPubMedCentralGoogle Scholar
  42. Hu Q, Sommerfeld M, Jarvis E, Ghirardi M, Posewitz M, Seibert M, Darzins A (2008) Microalgal triacylglycerols as a feedstocks for biofuel production: perspective and advances. Plant J 54:621–639PubMedPubMedCentralGoogle Scholar
  43. Huang W, Daboussi F (2017) Genetic and metabolic engineering in diatoms. Phil Trans R Soc B. CrossRefPubMedGoogle Scholar
  44. Jakob T, Goss R, Wilhelm C (1999) Activation of diadinoxanthin deepoxidase due to a chlororespiratory proton gradient in the dark in the diatom Phaeodactylum tricornutum. Plant Biol 1:76–82Google Scholar
  45. Jaubert M, Bouly JP, d’Alcalà MR, Falciatore A (2017) Light sensing and responses in marine microalgae. Curr Opin Plant Biol 37:70–77PubMedGoogle Scholar
  46. Jeffryes C, Campbell J, Li H, Jiao J, Rorrer G (2011) The potential of diatom nanobiotechnology for applications in solar cells, batteries, and electroluminescent devices. Energy Environ Sci 4:3930–3941Google Scholar
  47. Joseph MM, Renjith KR, John G, Nair S, Chandramohanakumar N (2017) Biodiesel prospective of five diatom strains using growth parameters and fatty acid profiles. Biofuels 8:81–89Google Scholar
  48. Jungandreas A, Costa BS, Jakob T, Von Bergen M, Baumann S, Wilhelm C (2014) The acclimation of Phaeodactylum tricornutum to blue and red light does not influence the photosynthetic light reaction but strongly disturbs the carbon allocation pattern. PLoS ONE 9:e99727PubMedPubMedCentralGoogle Scholar
  49. Kalaji HM, Schansker G, Ladle RJ, Goltsev V, Bosa K, Allakhverdiev SI, Brestic M et al (2014) Frequently asked questions about in vivo chlorophyll fluorescence: practical issues. Photosynth Res 122:121–158PubMedPubMedCentralGoogle Scholar
  50. Kamiya A, Saitoh T (2002) Blue-light-control of the uptake of amino acids and of ammonia in Chlorella mutants. Physiol Plant 116:248–254PubMedGoogle Scholar
  51. Kirk JT (1994) Light and photosynthesis in aquatic ecosystems. Cambridge University Press, CambridgeGoogle Scholar
  52. Kopalová K, Elster J, Nedbalová L, van de Vijver B (2009) Three new terrestrial diatom species from seepage areas on James Ross Island (Antarctic Peninsula Region). Diatom Res 24:113–122Google Scholar
  53. Kröger N, Deutzmann R, Sumper M (1999) Polycationic peptides from diatom biosilica that direct silica nanosphere formation. Science 286:1129–1132PubMedGoogle Scholar
  54. Kroth P (2007) Molecular biology and the biotechnological potential of diatoms. Transgenic microalgae as green cell factories. Springer, New York, pp 23–33Google Scholar
  55. Lauritano C, Martín J, de la Cruz M, Reyes F, Romano G, Ianora A (2018) First identification of marine diatoms with anti-tuberculosis activity. Sci Rep 8:2284PubMedPubMedCentralGoogle Scholar
  56. Lavaud J (2012) Fast regulation of photosynthesis in diatoms: mechanisms, evolution and ecophysiology. Funct Plant Sci Biotechonol 1:267–287Google Scholar
  57. Lavaud J, Van Gorkom HJ, Etienne AL (2002) Photosystem II electron transfer cycle and chlororespiration in planktonic diatoms. Photosynth Res 74:51–59PubMedGoogle Scholar
  58. Lebeau T, Robert JM (2003a) Diatom cultivation and biotechnologically relevant products. Part I: cultivation at various scales. Appl Microbiol Biotechnol 60:612–623PubMedGoogle Scholar
  59. Lebeau T, Robert JM (2003b) Diatom cultivation and biotechnologically relevant products. Part II: current and putative products. Appl Microbiol Biotechnol 60:624–632PubMedGoogle Scholar
  60. Lepetit B, Sturm S, Rogato A, Gruber A, Sachse M, Falciatore A, Kroth PG, Lavaud J (2013) High light acclimation in the secondary plastids containing diatom Phaeodactylum tricornutum is triggered by the redox state of the plastoquinone pool. Plant Physiol 161:853–865PubMedGoogle Scholar
  61. Lepetit B, Gélin G, Lepetit M, Sturm S, Vugrinec S, Rogato A, Kroth PG et al (2017) The diatom Phaeodactylum tricornutum adjusts nonphotochemical fluorescence quenching capacity in response to dynamic light via fine-tuned Lhcx and xanthophyll cycle pigment synthesis. New Phytol 214:205–218PubMedGoogle Scholar
  62. Levitan O, Dinamarca J, Hochman G, Falkowski PG (2014) Diatoms: a fossil fuel of the future. Trends Biotechnol 32:117–124PubMedGoogle Scholar
  63. Liao SM, Du QS, Meng JZ, Pang ZW, Huang RB (2013) The multiple roles of histidine in protein interactions. Chem Cen J 7:44Google Scholar
  64. Liu X, Duan S, Li A, Xu N, Cai Z, Hu Z (2009) Effects of organic carbon sources on growth, photosynthesis, and respiration of Phaeodactylum tricornutum. J Appl Phycol 21:239–246Google Scholar
  65. Lobo EA, Heinrich CG, Schuch M, Wetzel CE, Ector L (2016) Diatoms as bioindicators in rivers. In: River algae. Springer, Cham, pp 245–271Google Scholar
  66. Lopez PJ, Descles J, Allen AE, Bowler C (2005) Prospects in diatom research. Curr Opin Biotechnol 16:180–186PubMedGoogle Scholar
  67. Maeda Y, Yoshino T, Matsunaga T, Matsumoto M, Tanaka T (2018) Marine microalgae for production of biofuels and chemicals. Curr Opin Biotechnol 50:111–120PubMedGoogle Scholar
  68. Maity JP, Bundschuh J, Chen CY, Bhattacharya P (2014) Microalgae for third generation biofuel production, mitigation of greenhouse gas emissions and wastewater treatment: present and future perspectives: a mini review. Energy 78:104–113Google Scholar
  69. Malviya S, Scalco E, Audic S, Vincent F, Veluchamy A, Poulain J, Wincker P et al (2016) Insights into global diatom distribution and diversity in the world’s ocean. Proc Natl Acad Sci 113(11):E1516–E1525PubMedGoogle Scholar
  70. Markou G, Nerantzis E (2013) Microalgae for high-value compounds and biofuels production: a review with focus on cultivation under stress conditions. Biotech Adv 31:1532–1542Google Scholar
  71. Martínez Andrade KA, Lauritano C, Romano G, Ianora A (2018) Marine microalgae with anti-cancer properties. Mar Drugs 16:165PubMedCentralGoogle Scholar
  72. Mata TM, Martins AA, Caetano NS (2010) Microalgae for biodiesel production and other applications: a review. Renew Sust Energ Rev 14:217–232Google Scholar
  73. Matsumoto M, Nojima D, Nonoyama T, Ikeda K, Maeda Y, Yoshino T, Tanaka T (2017) Outdoor cultivation of marine diatoms for year-round production of biofuels. Mar Drugs 15:94PubMedCentralGoogle Scholar
  74. Merz CR, Main KL (2014) Microalgae (diatom) production—the aquaculture and biofuels nexus. In: Oceans-St. John’s, IEEE, pp 1–10Google Scholar
  75. Mishra M, Arukha AP, Bashir T, Yadav D, Prasad GBKS (2017) All new faces of diatoms: potential source of nanomaterials and beyond. Front Microbiol 8:1239PubMedPubMedCentralGoogle Scholar
  76. Mitra A, Zaman S (2016) Marine ecosystem: an overview. In: Basics of marine and estuarine ecology. Springer, New Delhi, pp 1–19Google Scholar
  77. Miyashita K, Hosokawa M (2018) Health impact of marine carotenoids. J Food Bioact 1:31–40Google Scholar
  78. Monteiro CM, Castro PM, Malcata FX (2012) Metal uptake by microalgae: underlying mechanisms and practical applications. Biotechnol Progr 28:299–311Google Scholar
  79. Nur MMA, Muizelaar W, Boelen P, Buma AGJ (2018) Environmental and nutrient conditions influence fucoxanthin productivity of the marine diatom Phaeodactylum tricornutum grown on palm oil mill effluent. J App Phycol 1–12Google Scholar
  80. Nymark M, Sharma AK, Sparstad T, Bones A, Winge P (2016) A CRISPR/Cas9 system adapted for gene editing in marine algae. Sci Rep 6:24951PubMedPubMedCentralGoogle Scholar
  81. Ooms MD, Dinh CT, Sargent EH, Sinton D (2016) Photon management for augmented photosynthesis. Nat Commun 7:12699PubMedPubMedCentralGoogle Scholar
  82. Orefice I, Chandrasekaran R, Smerilli A, Corato F, Caruso T, Casillo A, Brunet C et al (2016) Light-induced changes in the photosynthetic physiology and biochemistry in the diatom Skeletonema marinoi. Algal Res 17:1–13Google Scholar
  83. Owens TG (1986) Light-harvesting function in the diatom Phaeodactylum tricornutum: II. Distribution of excitation energy between the photosystems. Plant Physiol 80:739–746PubMedPubMedCentralGoogle Scholar
  84. Pashiardis S, Kalogirou SA, Pelengaris A (2017) Characteristics of photosynthetic active radiation (PAR) through statistical analysis at Larnaca, Cyprus. SM J Biometrics Biostat 2:1009Google Scholar
  85. Pasquet V, Ulmann L, Mimouni V, Guihéneuf F, Jacquette B, Morant-Manceau A, Tremblin G (2014) Fatty acids profile and temperature in the cultured marine diatom Odontella aurita. J Appl Phycol 26:2265–2271Google Scholar
  86. Perfeito C, Ambrósio M, Santos RB, Afonso CN, Abranches R (2018) Increasing fucoxanthin production in Phaeodactylum tricornutum using genetic engineering and optimization of culture conditions. Front Mar Sci Conference Abstract: IMMR’18| International Meeting on Marine Research 2018Google Scholar
  87. Popovich CA, Damiani MC, Constenla D, Martínez AM, Giovanardi M, Pancaldi S, Leonardi PI (2012) Neochloris oleoabundans grown in natural enriched seawater for biodiesel feedstock: evaluation of its growth and biochemical composition. Bioresour Technol 114:287–293PubMedGoogle Scholar
  88. Poulsen N, Berne C, Spain J, Kröger N (2007) Silica immobilization of an enzyme through genetic engineering of the diatom Thalassiosira pseudonana. Angew Chem Int Ed Engl 46:1843–1846PubMedGoogle Scholar
  89. Premvardhan L, Robert B, Beer A, Büchel C (2010) Pigment organization in fucoxanthin chlorophyll a/c2 proteins (FCP) based on resonance Raman spectroscopy and sequence analysis. Biochim Biophys Acta 1797:1647–1656PubMedGoogle Scholar
  90. Ragni R, Cicco SR, Vona D, Farinola GM (2018) Multiple routes to smart nanostructured materials from diatom microalgae: a chemical perspective. Adv Mater 30:1704289Google Scholar
  91. Raven JA (1987) The role of vacuoles. New Phytol 106:357–422Google Scholar
  92. Reid MA, Tibby JC, Penny D, Gell PA (1995) The use of diatoms to assess past and present water quality. Aust J Ecol 20:57–64Google Scholar
  93. Remmers IM, D’Adamo S, Martens DE, de Vos RCH, Mumm R, America AHP, Cordevener JHG et al (2018) Orchestration of transcriptome, proteome and metabolome in the diatom Phaeodactylum tricornutum during nitrogen limitation. Algal Res 35:33–49Google Scholar
  94. Rizwan M, Mujtaba G, Memon SA, Lee K, Rashid N (2018) Exploring the potential of microalgae for new biotechnology applications and beyond: a review. Renew Sust Energ Rev 92:394–404Google Scholar
  95. Rodolfi L, Chini Zittelli G, Bassi N, Padovani G, Biondi N, Bonini G, Tredici MR (2009) Microalgae for oil: strain selection, induction of lipid synthesis and outdoor mass cultivation in a low-cost photobioreactor. Biotechnol Bioeng 102:100–112PubMedGoogle Scholar
  96. Romero-Romero CC, del Pilar Sánchez-Saavedra M (2017) Effect of light quality on the growth and proximal composition of Amphora sp. J App Phycol 29:1203–1211Google Scholar
  97. Round FE, Crawford RM, Mann DG (1990) Diatoms: biology and morphology of the genera. Cambridge University Press, CambridgeGoogle Scholar
  98. Ruban A, Lavaud J, Rousseau B, Guglielmi G, Horton P, Etienne AL (2004) The super-excess energy dissipation in diatom algae: comparative analysis with higher plants. Photosynth Res 82:165PubMedGoogle Scholar
  99. Sabia A, Baldisserotto C, Biondi S, Marchesini R, Tedeschi P, Maietti A, Giovanardi M, Ferroni L, Pancaldi S (2015) Re-cultivation of Neochloris oleoabundans in exhausted autotrophic and mixotrophic media: the potential role of polyamines and free fatty acids. Appl Microbiol Biotechnol 99:10597–10609PubMedGoogle Scholar
  100. Sabia A, Clavero E, Pancaldi S, Rovira JS (2018) Effect of different CO2 concentrations on biomass, pigment content, and lipid production of the marine diatom Thalassiosira pseudonana. Appl Microbiol Biotechnol 102:1945–1954PubMedGoogle Scholar
  101. Santaeufemia S, Torres E, Mera R, Abalde J (2016) Bioremediation of oxytetracycline in seawater by living and dead biomass of the microalga Phaeodactylum tricornutum. J Hazard Mater 320:315–325PubMedGoogle Scholar
  102. Santaeufemia S, Torres E, Abalde J (2018) Biosorption of ibuprofen from aqueous solution using living and dead biomass of the microalga Phaeodactylum tricornutum. J Appl Phycol 30:471–482Google Scholar
  103. Schellenberger Costa B, Jungandreas A, Jakob T, Weisheit W, Mittag M, Wilhelm C (2012) Blue light is essential for high light acclimation and photoprotection in the diatom Phaeodactylum tricornutum. J Exp Bot 64:483–493PubMedPubMedCentralGoogle Scholar
  104. Schulze PS, Barreira LA, Pereira HG, Perales JA, Varela JC (2014) Light emitting diodes (LEDs) applied to microalgal production. Trends Biotechnol 32:422–430PubMedGoogle Scholar
  105. Singh SP, Singh P (2014) Effect of CO2 concentration on algal growth: a review. Renew Sust Energ Rev 38:172–179Google Scholar
  106. Smol JP, Stoermer EF (eds) (2010) The diatoms: applications for the environmental and earth sciences. Cambridge University Press, CambridgeGoogle Scholar
  107. Spolaore P, Joannis-Cassan C, Duran E, Isambert A (2006) Commercial applications of microalgae. J Biosci Bioeng 101:87–96PubMedGoogle Scholar
  108. Su Y, Lundholm N, Friis SM, Ellegaard M (2015) Implications for photonic applications of diatom growth and frustule nanostructure changes in response to different light wavelengths. Nano Res 8:2363–2372Google Scholar
  109. Su Y, Lundholm N, Ellegaard (2018) Effects of abiotic factors on the nanostructure of diatom frustules—ranges and variability. App Microbiol Biotechnol 102:5889–5899Google Scholar
  110. Takaichi S (2011) Carotenoids in algae: distributions, biosyntheses and functions. Mar Drugs 9:1101–1118PubMedPubMedCentralGoogle Scholar
  111. Torres E, Cid A, Herrero C, Abalde J (1998) Removal of cadmium ions by the marine diatom Phaeodactylum tricornutum Bohlin accumulation and long-term kinetics of uptake. Bioresour Technol 63:213–220Google Scholar
  112. Trentacoste EM, Shrestha RP, Smith SR, Glé C, Hartmann AC, Hildebrand M, Gerwick WH (2013) Metabolic engineering of lipid catabolism increases microalgal lipid accumulation without compromising growth. Proc Natl Acad Sci USA 110:19748–19753PubMedGoogle Scholar
  113. Tsukazaki C, Ishii KI, Matsuno K, Yamaguchi A, Imai I (2018) Distribution of viable resting stage cells of diatoms in sediments and water columns of the Chukchi Sea, Arctic Ocean. Phycologia 57:440–452Google Scholar
  114. van den Hoek C, Mann DG, Jahns HM (1995) Algae. An introduction to phycology. Cambridge University Press, CambridgeGoogle Scholar
  115. Wang JK, Seibert M (2017) Prospects for commercial production of diatoms. Biotechnol Biofuels 10:16PubMedPubMedCentralGoogle Scholar
  116. Wang B, Li Y, Wu N, Lan QC (2008) CO2 bio-mitigation using microalgae. Appl Microbiol Biotechnol 79:707–718PubMedGoogle Scholar
  117. Wang H, Fu R, Pei G (2012) A study on lipid production of the mixotrophic microalgae Phaeodactylum tricornutum on various carbon sources. Afr J Microbiol Res 6:1041–1047Google Scholar
  118. Wang XW, Liang JR, Luo CS, Chen CP, Gao YH (2014) Biomass, total lipid production, and fatty acid composition of the marine diatom Chaetoceros muelleri in response to different CO2 levels. Bioresour Technol 161:124–130PubMedGoogle Scholar
  119. Wichard T, Pohnert G (2006) Formation of halogenated medium chain hydrocarbons by a lipoxygenase/hydroperoxide halolyase-mediated transformation in planktonic microalgae. J Am Chem Soc 128:7114–7115PubMedGoogle Scholar
  120. Wilhelm C, Buchel C, Fisahn J, Goss R, Jakob T, Laroche J, Lohr M et al (2006) The regulation of carbon and nutrient assimilation in diatoms is significantly different from green algae. Protist 157:91–124PubMedGoogle Scholar
  121. Wilhelm C, Jungandreas A, Jakob T, Goss R (2014) Light acclimation in diatoms: from phenomenology to mechanisms. Mar Genom 16:5–15Google Scholar
  122. Winter JG, Duthie HC (2000) Stream epilithic, epipelic and epiphytic diatoms: habitat fidelity and use in biomonitoring. Aquat Ecol 34:345–353Google Scholar
  123. Yi Z, Xu M, Di X, Brynjolfsson S, Fu W (2017) Exploring valuable lipids in diatoms. Front Mar Sci 4:17Google Scholar
  124. Yu ET, Zendejas FJ, Lane PD, Gaucher S, Simmons BA, Lane TW (2009) Triacylglycerol accumulation and profiling in the model diatoms Thalassiosira pseudonana and Phaeodactylum tricornutum (Bacilariophyceae) during starvation. J Appl Phycol 21:669–681Google Scholar
  125. Zhang H, Shahbazi MA, Mäkilä EM, da Silva TH, Reis RL, Salonen JJ, Hirvonen JT, Santos HA (2013) Diatom silica microparticles for sustained release and permeation enhancement following oral delivery of prednisone and mesalamine. Biomaterials 34:9210–9219PubMedGoogle Scholar
  126. Zhu SH, Green BR (2010) Photoprotection in the diatom Thalassiosira pseudonana: Role of LI818-like proteins in response to high light stress. BBA-Bioenergetics 1797:1449–1457PubMedGoogle Scholar
  127. Zigmantas D, Hiller RG, Sharples FP, Frank HA, Sundstrom V, Polivka T (2004) Effect of a conjugated carbonyl group on the photophysical properties of carotenoids. Phys Chem Chem Phys 6:3009–3016Google Scholar
  128. Zulu NN, Zienkiewicz K, Vollheyde K, Feussner I (2018) Current trends to comprehend lipid metabolism in diatoms. Prog Lipid Res 70:1–16PubMedGoogle Scholar

Copyright information

© Springer Nature B.V. 2019

Authors and Affiliations

  • Costanza Baldisserotto
    • 1
  • Alessandra Sabia
    • 1
  • Lorenzo Ferroni
    • 1
  • Simonetta Pancaldi
    • 1
    Email author
  1. 1.Department of Life Sciences and BiotechnologyUniversity of FerraraFerraraItaly

Personalised recommendations