Advertisement

Insect microbial symbionts as a novel source for biotechnology

  • Sen Xie
  • Yahua Lan
  • Chao Sun
  • Yongqi ShaoEmail author
Review

Abstract

Insecta is the most diverse and largest class of animals on Earth, appearing together with the emergence of the first terrestrial ecosystem. Owing to this great diversity and long-term coexistence, an amazing variety of symbiotic microorganisms have adapted specifically to insects as hosts. Insect symbionts not only participate in many relationships with the hosts but also represent a novel resource for biotechnological applications. The exploitation of mutualistic symbiosis represents a promising area to search for bioactive compounds and new enzymes for potential clinical, industrial or environmental applications. Moreover, the manipulation of parasitic symbiosis has particular potential to solve practical problems for the control of agricultural pests and disease vectors. Although the study of microbial symbionts has been impaired by the unculturability of most symbionts, the rapidly growing catalogue of microbial genomes and the application of modern genetic techniques provide an alternative approach to using these microbes. This minireview presents examples of microbial symbionts isolated from insects for emerging biotechnological use and illuminates new ways for discovering microorganisms of applied value from a particularly promising source.

Keywords

Bioactive compounds Insect Metabolites Microbiome Symbionts 

Notes

Acknowledgements

We sincerely thank Dr. Ian Maddox for the invitation and encouragement to submit this paper. We also thank the editor and four anonymous reviewers for insightful comments on the manuscript, and we gratefully acknowledge the National Natural Science Foundation of China (Grant No. 31601906), the Modern Agricultural Industry Technology System (Grant No. CARS-18-ZJ0302), Zhejiang province analysis and testing science and technology project (Grant No. 2018C37060) and Max Planck Society for their financial support in our work.

References

  1. Adams AS, Jordan MS, Adams SM et al (2011) Cellulose-degrading bacteria associated with the invasive woodwasp Sirex noctilio. ISME J 5:1323–1331CrossRefGoogle Scholar
  2. Arora AK, Douglas AE (2017) Hype or opportunity? Using microbial symbionts in novel strategies for insect pest control. J Insect Physiol 103:10–17CrossRefGoogle Scholar
  3. Augustinos AA, Kyritsis GA, Papadopoulos NT, Abd-Alla AM, Caceres C, Bourtzis K (2015) Exploitation of the medfly gut microbiota for the enhancement of sterile insect technique: Use of Enterobacter sp. in Larval Diet-Based Probiotic Applications. PLoS ONE 10:e0136459CrossRefGoogle Scholar
  4. Berasategui A, Shukla S, Salem H, Kaltenpoth M (2016) Potential applications of insect symbionts in biotechnology. Appl Microbiol Biotechnol 100:1567–1577CrossRefGoogle Scholar
  5. Bombelli P, Howe CJ, Bertocchini F (2017) Polyethylene bio-degradation by caterpillars of the wax moth Galleria mellonella. Curr Biol 27:R292–R293CrossRefGoogle Scholar
  6. Challinor VL, Bode HB (2015) Bioactive natural products from novel microbial sources. Ann N Y Acad Sci 1354:82–97CrossRefGoogle Scholar
  7. Chen B, Teh BS, Sun C, Hu S, Lu X, Boland W, Shao Y (2016) Biodiversity and Activity of the Gut Microbiota across the Life History of the Insect Herbivore Spodoptera littoralis. Sci Rep 6:29505CrossRefGoogle Scholar
  8. Chen B, Du K, Sun C et al (2018a) Gut bacterial and fungal communities of the domesticated silkworm (Bombyx mori) and wild mulberry-feeding relatives. ISME J 12:2252–2262CrossRefGoogle Scholar
  9. Chen B, Yu T, Xie S et al (2018b) Comparative shotgun metagenomic data of the silkworm Bombyx mori gut microbiome. Sci Data 5:180285CrossRefGoogle Scholar
  10. Cheng D, Guo Z, Riegler M, Xi Z, Liang G, Xu Y (2017) Gut symbiont enhances insecticide resistance in a significant pest, the oriental fruit fly Bactrocera dorsalis (Hendel). Microbiome 5:13CrossRefGoogle Scholar
  11. Cladera JL, Vilardi JC, Juri M et al (2014) Genetics and biology of Anastrepha fraterculus: research supporting the use of the sterile insect technique (SIT) to control this pest in Argentina. BMC Genet 15:S12CrossRefGoogle Scholar
  12. Daisley BA, Trinder M, McDowell TW, Collins SL, Sumarah MW, Reid G (2018) Microbiota-mediated modulation of organophosphate insecticide toxicity by species-dependent interactions with lactobacilli in a drosophila melanogaster Insect Model. Appl Environ Microbiol 84:e02820–e02817CrossRefGoogle Scholar
  13. Degnan PH, Yu Y, Sisneros N, Wing RA, Moran NA (2009) Hamiltonella defensa, genome evolution of protective bacterial endosymbiont from pathogenic ancestors. Proc Natl Acad Sci USA 106:9063–9068CrossRefGoogle Scholar
  14. Duplouy A (2018) Uncovering the hidden players in Lepidoptera biology: the heritable microbial endosymbionts. Peer J 6:e4629CrossRefGoogle Scholar
  15. Engel MS, Grimaldi DA (2004) New light shed on the oldest insect. Nature 427:627–630CrossRefGoogle Scholar
  16. Ewald PW (1987) Transmission Modes and Evolution of the Parasitism-Mutualism Continuum. Ann N Y Acad Sci 503:295–306CrossRefGoogle Scholar
  17. Florez LV, Biedermann PH, Engl T, Kaltenpoth M (2015) Defensive symbioses of animals with prokaryotic and eukaryotic microorganisms. Nat Prod Rep 32:904–936CrossRefGoogle Scholar
  18. Florez LV, Scherlach K, Miller IJ, Rodrigues A, Kwan JC, Hertweck C, Kaltenpoth M (2018) An antifungal polyketide associated with horizontally acquired genes supports symbiont-mediated defense in Lagria villosa beetles. Nat Commun 9:2478CrossRefGoogle Scholar
  19. Fukui T, Kawamoto M, Shoji K et al (2015) The endosymbiotic bacterium wolbachia selectively kills male hosts by targeting the masculinizing gene. PLoS Pathog 11:e1005048CrossRefGoogle Scholar
  20. Gentile JE, Rund SSC, Madey GR (2015) Modelling sterile insect technique to control the population of Anopheles gambiae. Malar J 14:92CrossRefGoogle Scholar
  21. Gerardo N, Hurst G (2017) Q&A: Friends (but sometimes foes) within: the complex evolutionary ecology of symbioses between host and microbes. BMC Biol 15:126CrossRefGoogle Scholar
  22. Goettel MS, Koike M, Kim JJ, Aiuchi D, Shinya R, Brodeur J (2008) Potential of Lecanicillium spp. for management of insects, nematodes and plant diseases. J Invertebr Pathol 98:256–261CrossRefGoogle Scholar
  23. Haeder S, Wirth R, Herz H, Spiteller D (2009) Candicidin-producing Streptomyces support leaf-cutting ants to protect their fungus garden against the pathogenic fungus Escovopsis. Proc Natl Acad Sci USA 106:4742–4746CrossRefGoogle Scholar
  24. Hansen AK, Moran NA (2014) The impact of microbial symbionts on host plant utilization by herbivorous insects. Mol Ecol 23:1473–1496CrossRefGoogle Scholar
  25. Itoh H, Tago K, Hayatsu M, Kikuchi Y (2018) Detoxifying symbiosis: microbe-mediated detoxification of phytotoxins and pesticides in insects. Nat Prod Rep 35:434–454CrossRefGoogle Scholar
  26. Klepzig KD, Adams AS, Handelsman J, Raffa KF (2009) Symbioses: a key driver of insect physiological processes, ecological interactions, evolutionary diversification, and impacts on humans. Environ Entomol 38:67–77CrossRefGoogle Scholar
  27. Lacey LA, Grzywacz D, Shapiro-Ilan DI, Frutos R, Brownbridge M, Goettel MS (2015) Insect pathogens as biological control agents: back to the future. J Invertebr Pathol 132:1–41CrossRefGoogle Scholar
  28. Liang X, Sun C, Chen B et al (2018) Insect symbionts as valuable grist for the biotechnological mill: an alkaliphilic silkworm gut bacterium for efficient lactic acid production. Appl Microbiol Biotechnol 102:4951–4962CrossRefGoogle Scholar
  29. Mahar AN, Al-Siyabi AA, Elawad SA, Hague NG, Gowen SR (2006) Application of toxins from the entomopathogenic bacterium, Xenorhabdus nematophila, for the control of insects on foliage. Commun Agric Appl Biol Sci 71:233–238PubMedGoogle Scholar
  30. Manfredi AP, Perotti NI, Martinez MA (2015) Cellulose degrading bacteria isolated from industrial samples and the gut of native insects from Northwest of Argentina. J Basic Microbiol 55:1384–1393CrossRefGoogle Scholar
  31. Mason KL, Stepien TA, Blum JE et al (2011) From commensal to pathogen: translocation of Enterococcus faecalis from the midgut to the hemocoel of Manduca sexta. MBio 2:e00065–e00011CrossRefGoogle Scholar
  32. Matsui T, Tanaka J, Namihira T, Shinzato N (2012) Antibiotics production by an actinomycete isolated from the termite gut. J Basic Microbiol 52:731–735CrossRefGoogle Scholar
  33. Mika N, Zorn H, Ruhl M (2013) Insect-derived enzymes: a treasure for industrial biotechnology and food biotechnology. Adv Biochem Eng Biotechnol 136:1–17PubMedGoogle Scholar
  34. Misof B, Liu SL, Meusemann K et al (2014) Phylogenomics resolves the timing and pattern of insect evolution. Science 346:763–767CrossRefGoogle Scholar
  35. Ni J, Tokuda G (2013) Lignocellulose-degrading enzymes from termites and their symbiotic microbiota. Biotechnol Adv 31:838–850CrossRefGoogle Scholar
  36. Nikoh N, Hosokawa T, Moriyama M, Oshima K, Hattori M, Fukatsu T (2014) Evolutionary origin of insect-Wolbachia nutritional mutualism. Proc Natl Acad Sci USA 111:10257–10262CrossRefGoogle Scholar
  37. Nikolouli K, Colinet H, Renault D et al (2018) Sterile insect technique and Wolbachia symbiosis as potential tools for the control of the invasive species Drosophila suzukii. J Pest Sci 91:489–503CrossRefGoogle Scholar
  38. Otagiri M, Lopez CM, Kitamoto K, Arioka M, Kudo T, Moriya S (2013) Heterologous expression and characterization of a glycoside hydrolase family 45 endo-beta-1,4-glucanase from a symbiotic protist of the lower termite, Reticulitermes speratus. Appl Biochem Biotechnol 169:1910–1918CrossRefGoogle Scholar
  39. Owuama CI (2001) Entomopathogenic symbiotic bacteria, Xenorhabdus and Photorhabdus of nematodes. World J Microbiol Biotechnol 17:505–515CrossRefGoogle Scholar
  40. Pagabeleguem S, Gimonneau G, Seck MT et al (2016) A molecular method to discriminate between mass-reared sterile and wild tsetse flies during eradication programmes that have a sterile insect technique component. PLoS Negl Trop Dis 10:e0004491CrossRefGoogle Scholar
  41. Perlman SJ, Dowdy NJ, Harris LR, Khalid M, Kelly SE, Hunter MS (2014) Factors affecting the strength of Cardinium-induced cytoplasmic incompatibility in the parasitic wasp Encarsia pergandiella (Hymenoptera: Aphelinidae). Microb Ecol 67:671–678CrossRefGoogle Scholar
  42. Piel J (2002) A polyketide synthase-peptide synthetase gene cluster from an uncultured bacterial symbiont of Paederus beetles. Proc Natl Acad Sci USA 99:14002–14007CrossRefGoogle Scholar
  43. Rai M, Agarkar G (2016) Plant–fungal interactions: what triggers the fungi to switch among lifestyles? Crit Rev Microbiol 42:428–438CrossRefGoogle Scholar
  44. Raphael KA, Shearman DCA, Gilchrist AS et al (2014) Australian endemic pest tephritids: genetic, molecular and microbial tools for improved Sterile Insect Technique. BMC Genet 15:S9CrossRefGoogle Scholar
  45. Ricci I, Valzano M, Ulissi U, Epis S, Cappelli A, Favia G (2012) Symbiotic control of mosquito borne disease. Pathog Glob Health 106:380–385CrossRefGoogle Scholar
  46. Sachs JL, Skophammer RG, Regus JU (2011) Evolutionary transitions in bacterial symbiosis. Proc Natl Acad Sci USA 108:10800–10807CrossRefGoogle Scholar
  47. Scharf ME (2015) Termites as targets and models for biotechnology. Annu Rev Entomol 60:77–102CrossRefGoogle Scholar
  48. Shao Y, Chen B, Sun C, Ishida K, Hertweck C, Boland W (2017) Symbiont-derived antimicrobials contribute to the control of the lepidopteran gut microbiota. Cell Chem Biol 24:66–75CrossRefGoogle Scholar
  49. Shi YM, Bode HB (2018) Chemical language and warfare of bacterial natural products in bacteria-nematode-insect interactions. Nat Prod Rep 35:309–335CrossRefGoogle Scholar
  50. Singhal K, Khanna R, Mohanty S (2017) Is Drosophila-microbe association species-specific or region specific? A study undertaken involving six Indian Drosophila species. World J Microbiol Biotechnol 33:103CrossRefGoogle Scholar
  51. Skelton J, Doak S, Leonard M, Creed RP, Brown BL (2016) The rules for symbiont community assembly change along a mutualism-parasitism continuum. J Anim Ecol 85:843–853CrossRefGoogle Scholar
  52. Snyman M, Gupta AK, Bezuidenhout CC, Claassens S, van den Berg J (2016) Gut microbiota of Busseola fusca (Lepidoptera: Noctuidae). World J Microbiol Biotechnol 32:115CrossRefGoogle Scholar
  53. Tsukagoshi H, Nakamura A, Ishida T et al (2014) The GH26 beta-mannanase RsMan26H from a symbiotic protist of the termite Reticulitermes speratus is an endo-processive mannobiohydrolase: heterologous expression and characterization. Biochem Biophys Res Commun 452:520–525CrossRefGoogle Scholar
  54. Van Arnam EB, Ruzzini AC, Sit CS, Horn H, Pinto-Tomas AA, Currie CR, Clardy J (2016) Selvamicin, an atypical antifungal polyene from two alternative genomic contexts. Proc Natl Acad Sci USA 113:12940–12945CrossRefGoogle Scholar
  55. Vorburger C, Perlman SJ (2018) The role of defensive symbionts in host-parasite coevolution. Biol Rev Camb Philos Soc 93:1747–1764CrossRefGoogle Scholar
  56. Wei G, Lai Y, Wang G, Chen H, Li F, Wang S (2017) Insect pathogenic fungus interacts with the gut microbiota to accelerate mosquito mortality. Proc Natl Acad Sci USA 114:5994–5999CrossRefGoogle Scholar
  57. Werren JH (1997) Biology of Wolbachia. Annu Rev Entomol 42:587–609CrossRefGoogle Scholar
  58. Yan S, Wu G (2016) Analysis on evolutionary relationship of amylases from archaea, bacteria and eukaryota. World J Microbiol Biotechnol 32:24CrossRefGoogle Scholar
  59. Yang J, Yang Y, Wu WM, Zhao J, Jiang L (2014) Evidence of polyethylene biodegradation by bacterial strains from the guts of plastic-eating waxworms. Environ Sci Technol 48:13776–13784CrossRefGoogle Scholar
  60. Yang Y, Yang J, Wu WM et al (2015) Biodegradation and mineralization of polystyrene by plastic-eating mealworms: part 2. role of gut microorganisms. Environ Sci Technol 49:12087–12093CrossRefGoogle Scholar
  61. Zhang D, Lees RS, Xi Z, Gilles JR, Bourtzis K (2015a) Combining the sterile insect technique with wolbachia-based approaches: II–A safer approach to aedes albopictus population suppression programmes, designed to minimize the consequences of inadvertent female release. PLoS ONE 10:e0135194CrossRefGoogle Scholar
  62. Zhang D, Zheng X, Xi Z, Bourtzis K, Gilles JR (2015b) Combining the sterile insect technique with the incompatible insect technique: I-impact of wolbachia infection on the fitness of triple- and double-infected strains of Aedes albopictus. PLoS ONE 10:e0121126CrossRefGoogle Scholar
  63. Zhang D, Lees RS, Xi Z, Bourtzis K, Gilles JR (2016) Combining the sterile insect technique with the incompatible insect technique: III-robust mating competitiveness of irradiated triple wolbachia-infected aedes albopictus males under semi-field conditions. PLoS ONE 11:e0151864CrossRefGoogle Scholar

Copyright information

© Springer Nature B.V. 2019

Authors and Affiliations

  1. 1.Institute of Sericulture and Apiculture, College of Animal SciencesZhejiang UniversityHangzhouPeople’s Republic of China
  2. 2.Analysis Center of Agrobiology and Environmental SciencesZhejiang UniversityHangzhouPeople’s Republic of China
  3. 3.Key Laboratory for Molecular Animal NutritionMinistry of EducationBeijingPeople’s Republic of China

Personalised recommendations