Polar flagellum of the alphaproteobacterium Azospirillum brasilense Sp245 plays a role in biofilm biomass accumulation and in biofilm maintenance under stationary and dynamic conditions

  • Andrei V. Shelud’ko
  • Yulia A. Filip’echeva
  • Elizaveta M. Telesheva
  • Stella S. Yevstigneeva
  • Lilia P. Petrova
  • Elena I. KatsyEmail author
Original Paper


Bacteria Azospirillum brasilense may swim and swarm owing to the rotation of a constitutive polar flagellum (Fla) and inducible lateral flagella (Laf). They also construct sessile biofilms on various interfaces. As compared to the wild-type strain Sp245, the previously characterized Fla Laf flhB1 mutant Sp245.1063 accumulated less biomass in mature biofilms, which also were susceptible to the forces of hydrodynamic shear. In this study, we compared biofilms formed by strain Sp245 and its previously constructed derivatives on the interfaces between a minimal (malate–salt medium, or MSM) or rich (LB) liquid growth medium and a hydrophilic (glass) or hydrophobic (polystyrene) solid surface under static or dynamic conditions. In all experimental settings, the alterations in Sp245.1063’s mature biofilm traits were partially (in MSM) or completely (in LB) rescued in the complemented mutant Sp245.1063 (pRK415–150177), which received the pRK415-borne coding sequence for the putative FlhB1 protein of the flagellar type III secretion system. Although Laf were not found in the biofilms of azospirilla, Fla was present on the biofilm cells of the complemented mutant Sp245.1063 (pRK415–150177) and other studied strains, which had normal flagellation on liquid and solid nutritional media. Accordingly, mature biofilms of these strains contained more biomass and were significantly more resistant to shaking at 140 rpm, as compared to the biofilms of the flagella-free mutant bacteria. These data proved that the polar flagellum of A. brasilense Sp245 plays a significant positive role in biofilm biomass increase and in biofilm stabilization.


Azospirillum brasilense Polar flagellum Biofilm Hydrodynamic shear 



The authors are grateful to Dr. A.M. Burov for expert technical support and to the Symbiosis Center for the Collective Use of Research Equipment in the Field of Physical–Chemical Biology and Nanobiotechnology at the IBPPM RAS (Saratov, Russia) for providing access to research equipment.

Compliance with ethical standards

Conflict of interest

All the authors declare that they have no conflict of interest regarding the publication of this article.

Supplementary material

11274_2019_2594_MOESM1_ESM.pdf (1.2 mb)
Supplementary material 1 (PDF 1184 KB)


  1. Baldani VLD, Baldani JI, Döbereiner J (1983) Effects of Azospirillum inoculation on root infection and nitrogen incorporation in wheat. Can J Microbiol 29:924–929. CrossRefGoogle Scholar
  2. Baldani JI, Videira SS, Teixeira KRDS, Reis VM, Oliveira ALM, Schwab S, de Souza EM, Pedraza RO, Baldani VLCD, Hartmann A (2014) The family Rhodospirillaceae. In: Rosenberg E, DeLong EF, Lory S, Stackebrandt E, Thompson F (eds) The prokaryotes: alphaproteobacteria and betaproteobacteria. Springer, Berlin, pp 533–618. CrossRefGoogle Scholar
  3. Belyakov AY, Burygin GL, Arbatsky NP, Shashkov AS, Selivanov NY, Matora LY, Knirel YA, Shchyogolev SY (2012) Identification of an O-linked repetitive glycan chain of the polar flagellum flagellin of Azospirillum brasilense Sp7. Carbohydr Res 361:127–132. CrossRefPubMedGoogle Scholar
  4. Biswas S, Mukherjee P, Manna T, Dutta K, Guchhait KC, Karmakar A, Karmakar M, Dua P, Panda AK, Ghosh C (2018) Quorum sensing autoinducer(s) and flagellum independently mediate EPS signaling in Vibrio cholerae through LuxO-independent mechanism. Microb Ecol. CrossRefPubMedGoogle Scholar
  5. Borland S, Oudart A, Prigent-Combaret C, Brochier-Armanet C, Wisniewski-Dyé F (2015) Genome-wide survey of two-component signal transduction systems in the plant growth-promoting bacterium Azospirillum. BMC Genom 16:833. CrossRefGoogle Scholar
  6. Burygin GL, Shirokov AA, Shelud’ko AV, Katsy EI, Shchygolev SY, Matora LY (2007) Detection of a sheath on Azospirillum brasilense polar flagellum. Microbiology 76:728–734. CrossRefGoogle Scholar
  7. Cohen MF, Han XY, Mazzola M (2004) Molecular and physiological comparison of Azospirillum spp. isolated from Rhizoctonia solani mycelia, wheat rhizosphere, and human skin wounds. Can J Microbiol 50:291–297. CrossRefPubMedGoogle Scholar
  8. Croes CL, Moens S, van Bastelaere E, Vanderleyden J, Michiels KW (1993) The polar flagellum mediates Azospirillum brasilense adsorption to wheat roots. J Gen Microbiol 139:2261–2269. CrossRefGoogle Scholar
  9. Döbereiner J, Day JM (1976) Associative symbiosis in tropical grass: characterization of microorganisms and dinitrogen fixing sites. In: Newton WE, Nijmans CJ (eds.) Symposium on nitrogen fixation. Washington State University Press, Pullman, pp 518–538Google Scholar
  10. Enos-Berlage JL, Guvener ZT, Keenan CE, McCarter LL (2005) Genetic determinants of biofilm development of opaque and translucent Vibrio parahaemolyticus. Mol Microbiol 55:1160–1182. CrossRefPubMedGoogle Scholar
  11. Fellay R, Krisch HM, Prentki P, Frey J (1989) Omegon-Km: a transposable element designed for in vivo insertional mutagenesis and cloning of genes in gram-negative bacteria. Gene 76:215–226. CrossRefPubMedGoogle Scholar
  12. Filip’echeva YA, Shelud’ko AV, Prilipov AG, Burygin GL, Telesheva EM, Yevstigneyeva SS, Chernyshova MP, Petrova LP, Katsy EI (2018a) Plasmid AZOBR_p1-borne fabG gene for putative 3-oxoacyl-[acyl-carrier protein] reductase is essential for proper assembly and work of the dual flagellar system in the alphaproteobacterium Azospirillum brasilense Sp245. Can J Microbiol 64:107–118. CrossRefPubMedGoogle Scholar
  13. Filip’echeva Y, Shelud’ko A, Prilipov A, Telesheva E, Mokeev D, Burov A, Petrova L, Katsy E (2018b) Chromosomal flhB1 gene of the alphaproteobacterium Azospirillum brasilense Sp245 is essential for correct assembly of both constitutive polar flagellum and inducible lateral flagella. Folia Microbiol 63:147–153. CrossRefGoogle Scholar
  14. Fukami J, Fernandes Abrantes JL, del Cerro P, Nogueira MA, Ollero FJ, Megías M, Hungria M (2018) Revealing strategies of quorum sensing in Azospirillum brasilense strains Ab–V5 and Ab–V6. Arch Microbiol 200:47–56. CrossRefPubMedGoogle Scholar
  15. Gavín R, Rabaan AA, Merino S, Tomás JM, Gryllos I, Shaw JG (2002) Lateral flagella of Aeromonas species are essential for epithelial cell adherence and biofilm formation. Mol Microbiol 43:383–397. CrossRefPubMedGoogle Scholar
  16. Holguin G, Glick BR (2001) Expression of the ACC deaminase gene from Enterobacter cloacae UW4 in Azospirillum brasilense. Microb Ecol 41:281–288. CrossRefPubMedGoogle Scholar
  17. Houry A, Briandet R, Aymerich S, Gohar M (2010) Involvement of motility and flagella in Bacillus cereus biofilm formation. Microbiology 156:1009–1018. CrossRefPubMedGoogle Scholar
  18. Jiang Z-Y, Rushing BG, Bai Y, Gest H, Bauer CE (1998) Isolation of Rhodospirillum centenum mutants defective in phototactic colony motility by transposon mutagenesis. J Bacteriol 180:1248–1255PubMedPubMedCentralGoogle Scholar
  19. Keen NT, Tamaki S, Kobayashi D, Trollinger D (1988) Improved broad-host-range plasmids for DNA cloning in Gram-negative bacteria. Gene 70:191–197. CrossRefPubMedGoogle Scholar
  20. Kovtunov EA, Petrova LP, Shelud’ko AV, Katsy EI (2013) Transposon insertion into a chromosomal copy of flhB gene is concurrent with defects in the formation of polar and lateral flagella in bacterium Azospirillum brasilense Sp245. Russ J Genet 49:881–884. CrossRefGoogle Scholar
  21. Laverty G, Gorman SP, Gilmore BF (2014) Biomolecular mechanisms of Pseudomonas aeruginosa and Escherichia coli biofilm formation. Pathogens 3:596–632. CrossRefPubMedPubMedCentralGoogle Scholar
  22. Lerner A, Castro-Sowinski S, Lerner H, Okon Y, Burdman S (2009a) Glycogen phosphorylase is involved in stress endurance and biofilm formation in Azospirillum brasilense Sp7. FEMS Microbiol Lett 300:75–82. CrossRefPubMedGoogle Scholar
  23. Lerner A, Castro-Sowinski S, Valverde A, Lerner H, Dror R, Okon Y, Burdman S (2009b) The Azospirillum brasilense Sp7 noeJ and noeL genes are involved in extracellular polysaccharide biosynthesis. Microbiology 155:4058–4068. CrossRefPubMedGoogle Scholar
  24. López D, Vlamakis H, Kolter R (2010) Biofilms. Cold Spring Harb Perspect Biol 2:a000398. CrossRefPubMedPubMedCentralGoogle Scholar
  25. McClain J, Rollo DR, Rushing BG, Bauer CE (2002) Rhodospirillum centenum utilizes separate motor and switch components to control lateral and polar flagellum rotation. J Bacteriol 184:2429–2438. CrossRefPubMedPubMedCentralGoogle Scholar
  26. Merino S, Shaw JG, Tomas JM (2006) Bacterial lateral flagella: an inducible flagella system. FEMS Microbiol Lett 263:127–135. CrossRefPubMedGoogle Scholar
  27. Moens S, Michiels K, Vanderleyden J (1995) Glycosylation of the flagellin of the polar flagellum of Azospirillum brasilense, a Gram-negative nitrogen-fixing bacterium. Microbiology 141:2651–2657. CrossRefGoogle Scholar
  28. Moens S, Schloter M, Vanderleyden J (1996) Expression of the structural gene, laf1, encoding the flagellin of the lateral flagella in Azospirillum brasilense Sp7. J Bacteriol 178:5017–5019. CrossRefPubMedPubMedCentralGoogle Scholar
  29. O’Toole GA, Kolter R (1998) Initiation of biofilm formation in Pseudomonas fluorescens WCS365 proceeds via multiple, convergent signalling pathways: a genetic analysis. Mol Microbiol 28:449–461. CrossRefPubMedGoogle Scholar
  30. Park K-S, Arita M, Iida T, Honda T (2005) vpaH, a gene encoding a novel histone-like nucleoid structure-like protein that was possibly horizontally acquired, regulates the biogenesis of lateral flagella in trh-positive Vibrio parahaemolyticus. Infect Immun 73(9):5754–5761. CrossRefPubMedPubMedCentralGoogle Scholar
  31. Paytubi S, Cansado C, Madrid C, Balsalobre C (2017) Nutrient composition promotes switching between pellicle and bottom biofilm in Salmonella. Front Microbiol 8:2160. CrossRefPubMedPubMedCentralGoogle Scholar
  32. Ramírez-Mata A, López-Lara LI, Xiqui-Vázquez ML, Jijón-Moreno S, Romero-Osorio A, Baca BE (2016) The cyclic-di-GMP diguanylate cyclase CdgA has a role in biofilm formation and exopolysaccharide production in Azospirillum brasilense. Res Microbiol 167:190–201. CrossRefPubMedGoogle Scholar
  33. Ramírez-Mata A, Pacheco MR, Moreno SJ, Xiqui- Vázquez ML, Baca BE (2018) Versatile use of Azospirillum brasilense strains tagged with egfp and mCherry genes for the visualization of biofilms associated with wheat roots. Microbiol Res 215:155–163. CrossRefPubMedGoogle Scholar
  34. Sambrook J, Fritsch EF, Maniatis T (1989) Molecular cloning: a laboratory manual, 2 edn. Cold Spring Harbor Laboratory, New YorkGoogle Scholar
  35. Scheludko AV, Katsy EI, Ostudin NA, Gringauz OK, Panasenko VI (1998) Novel classes of Azospirillum brasilense mutants with defects in the assembly and functioning of polar and lateral flagella. Mol Gen Microbiol Virusol (4):33–37. PMID: 9987751Google Scholar
  36. Serelis J, Papaparaskevas J, Stathi A, Sawides AL, Karagouni AD, Tsakris A, Pangalis A (2013) Granulomatous infection of the hand and wrist due to Azospirillum spp. Diagn Microbiol Infect Dis 76:513–515. CrossRefPubMedGoogle Scholar
  37. Shelud’ko AV, Shirokov AA, Sokolova MK, Sokolov OI, Petrova LP, Matora LY, Katsy EI (2010) Wheat root colonization by Azospirillum brasilense strains with different motility. Microbiology 79:688–695. CrossRefGoogle Scholar
  38. Shelud’ko AV, Filip’echeva YA, Shumilova EM, Khlebtsov BN, Burov AM, Petrova LP, Katsy EI (2015) Changes in biofilm formation in the nonflagellated flhB1 mutant of Azospirillum brasilense Sp245. Microbiology 84:144–151. CrossRefGoogle Scholar
  39. Sheludko AV, Kulibyakina OV, Shirokov AA, Petrova LP, Matora LY, Katsy EI (2008) The effect of mutations affecting synthesis of lipopolysaccharides and calcofluor-binding polysaccharides on biofilm formation by Azospirillum brasilense. Microbiology 77:313–317. CrossRefGoogle Scholar
  40. Shumilova EM, Shelud’ko AV, Filip’echeva YA, Evstigneeva SS, Ponomareva EG, Petrova LP, Katsy EI (2016) Changes in cell surface properties and biofilm formation efficiency in Azospirillum brasilense Sp245 mutants in the putative genes of lipid metabolism mmsB1 and fabG1. Microbiology 85:172–179. CrossRefGoogle Scholar
  41. Tarrand JX, Krieg NE, Döbereiner J (1978) A taxonomic study of the Spirillum lipoferum group, with descriptions of a new genus, Azospirillum gen. nov. and two species, Azospirillum lipoferum (Beijerinck) comb. nov. and Azospirillum brasilense sp. nov. Can J Microbiol 24:967–980. CrossRefPubMedGoogle Scholar
  42. Watnick PI, Lauriano CM, Klose KE, Croal L, Kolter R (2001) The absence of a flagellum leads to altered colony morphology, biofilm development and virulence in Vibrio cholerae O139. Mol Microbiol 39:223–235. CrossRefPubMedPubMedCentralGoogle Scholar
  43. Wisniewski-Dyé F, Borziak K, Khalsa-Moyers G, Alexandre G, Sukharnikov LO, Wuichet K, Hurst GB, McDonald WH, Robertson JS, Barbe V, Calteau A, Rouy Z, Mangenot S, Prigent-Combaret C, Normand P, Boyer M, Siguier P, Dessaux Y, Elmerich C, Condemine G, Krishnen G, Kennedy I, Paterson AH, González V, Mavingui P, Zhulin IB (2011) Azospirillum genomes reveal transition of bacteria from aquatic to terrestrial environments. PLoS Genet 7:e1002430. CrossRefPubMedPubMedCentralGoogle Scholar
  44. Yildiz FH, Visick KL (2009) Vibrio biofilms: so much the same yet so different. Trends Microbiol 17:109–118. CrossRefPubMedPubMedCentralGoogle Scholar
  45. Zhang W, Seminara A, Suaris M, Brenner MP, Weitz DA, Angelini TE (2014) Nutrient depletion in Bacillus subtilis biofilms triggers matrix production. New J Phys 16:015028. CrossRefGoogle Scholar

Copyright information

© Springer Nature B.V. 2019

Authors and Affiliations

  1. 1.Institute of Biochemistry and Physiology of Plants and MicroorganismsRussian Academy of SciencesSaratovRussia

Personalised recommendations