Advertisement

Bioprospecting of whole-cell biocatalysts for cholesterol biotransformation

  • Victoria GiorgiEmail author
  • Michel Chaves
  • Pilar Menéndez
  • Carlos García Carnelli
Original Paper

Abstract

Microorganisms were isolated from industrial wool scouring effluents and from the soil adjacent to the wastewater treatment lagoon, both sterols-rich environments, in order to search for novel biocatalysts able to transform cholesterol. The isolates were identified on the basis of morphological and biochemical characteristics and phylogenetic analysis. Furthermore, a rapid and accurate bacteria identification by matrix assisted laser desorption/ionization-time-of-flight mass spectrometry was carried out. Bacteria and fungi including representatives of the genera Fusarium, Talaromyces, Trichoderma, Mucor, Aspergillus, Citrobacter, Proteus, Klebsiella, Exiguobacterium, Acinetobacter, Tsukamurella, Bacillus, and Streptomyces were found and evaluated for their ability to biotransform cholesterol by whole-cell treatment system. The results show that a Trichoderma koningiopsis strain, as well as two strains of Mucor circinelloides were able to transform cholesterol into value-added products. The major products were characterized as 7β-hydroxycholesterol, 4-cholesten-3-one, 5α,6α-epoxycholestan-3β-ol and 5β,6β-epoxycholestan-3β-ol. To the best of our knowledge, the present study is the first report of cholesterol biotransformation by representatives of Trichoderma and Mucor genera.

Graphical abstract

Keywords

Biotransformation Cholesterol MALDI-TOF MS Mucor Trichoderma Whole-cell biocatalyst 

Notes

Acknowledgements

The authors are grateful to Lanasur SA for allowing them to take samples from the wool scouring wastewater treatment system. The authors thank Professor Anita Marsaioli and Dr. María Lair Sabóia, of Institute of Chemistry, University of Campinas; and Dr. Paula Rodríguez, Dr. Sonia Rodríguez, and Dr. Guillermo Moyna of Facultad de Química, Universidad de la República, for their assistance with this Project. This study was funded by Agencia Nacional de Investigación e Innovación (Award POS_NAC_2013_1_11432), Comisión Académica de Posgrado (CAP), Comisión Sectorial de Investigación Científica (CSIC), Programa de Desarrollo de las Ciencias Básicas (PEDECIBA), and Sociedad Uruguaya de Biociencias (SUB).

Compliance with ethical standards

Conflict of interest

The authors declare that they have no conflicts of interest.

Supplementary material

11274_2018_2586_MOESM1_ESM.docx (42.7 mb)
Supplementary material 1 (DOCX 43680 KB)

References

  1. Ahire JJ, Bhat AA, Thakare JM et al (2012) Cholesterol assimilation and biotransformation by Lactobacillus helveticus. Biotechnol Lett 34:103–107.  https://doi.org/10.1007/s10529-011-0733-2 CrossRefPubMedGoogle Scholar
  2. Ahmad S, Roy PK, Khan AW et al (1991) Microbial transformation of sterols to C19-steroids by Rhodococcus equi. World J Microbiol Biotechnol 7:557–561CrossRefGoogle Scholar
  3. Al Jasem Y, Khan M, Taha A, Thiemann T (2014) Preparation of steroidal hormones with an emphasis on transformations of phytosterols and cholesterol -a review. Mediterr J Chem 3:796–830.  https://doi.org/10.13171/mjc.3.2.2014.18.04.15 CrossRefGoogle Scholar
  4. Altschul SF, Gish W, Miller W et al (1990) Basic local alignment search tool. J Mol Biol 215:403–410.  https://doi.org/10.1016/S0022-2836(05)80360-2 CrossRefPubMedPubMedCentralGoogle Scholar
  5. Barrow GI, Feltham RKA (1993) Cowan and Steel’s manual for the identification of medical bacteria, 3rd edn. Cambridge University Press, CambridgeCrossRefGoogle Scholar
  6. Bartmaska A, Dmochowska-Gladysz J (2007) Transformation of steroids by Trichoderma hamatum. Enzyme Microb Technol 40:1615–1621.  https://doi.org/10.1016/j.enzmictec.2006.11.011 CrossRefGoogle Scholar
  7. Bhatti HN, Khera RA (2012) Biological transformations of steroidal compounds: a review. Steroids 77:1267–1290.  https://doi.org/10.1016/j.steroids.2012.07.018 CrossRefPubMedGoogle Scholar
  8. Bloch K (1991) Cholesterol: evolution of structure and function. In: Vance DE, Vance JE (eds) Biochemistry of lipids, lipoproteins and membranes. Elsevier B.V., Amsterdam, pp 363–381Google Scholar
  9. Brown FJ, Djerassi C (1980) Elucidation of the course of the electron impact induced fragmentation of α,β-unsaturated 3-keto steroids. J Am Chem Soc 102:807–817CrossRefGoogle Scholar
  10. Chaudhari PN, Chaudhari BL, Chincholkar SB (2010) Cholesterol biotransformation to androsta-1,4-diene-3,17-dione by growing cells of Chryseobacterium gleum. Biotechnol Lett 32:695–699.  https://doi.org/10.1007/s10529-010-0206-z CrossRefPubMedGoogle Scholar
  11. Dogra N, Qazi GN (2001) Steroid biotransformation by different strains of Micrococcus sp. Folia Microbiol 46:17–20CrossRefGoogle Scholar
  12. Donova MV (2007) Transformation of steroids by actinobacteria: a review. Appl Biochem Microbiol 43:5–18.  https://doi.org/10.1134/S0003683807010012 CrossRefGoogle Scholar
  13. Donova MV, Egorova OV (2012) Microbial steroid transformations: current state and prospects. Appl Microbiol Biotechnol 94:1423–1447.  https://doi.org/10.1007/s00253-012-4078-0 CrossRefPubMedGoogle Scholar
  14. Dovbnya D, Khomutov S, Kollerov V, Donova M (2017) Obtaining of 11α-hydroxyandrost-4-ene-3,17-dione from natural sterols. Methods Mol Biol.  https://doi.org/10.1007/978-1-4939-7183-1_18 CrossRefPubMedGoogle Scholar
  15. El-Kadi IA, Eman Mostafa M (2004) Hydroxylation of progesterone by some Trichoderma species. Folia Microbiol 49:285–290.  https://doi.org/10.1007/2FBF02931044 CrossRefGoogle Scholar
  16. Faramarzi MA, Badiee M, Yazdi MT et al (2008) Formation of hydroxysteroid derivatives from androst-4-en-3,17-dione by the filamentous fungus Mucor racemosus. J Mol Catal B.  https://doi.org/10.1016/j.molcatb.2007.09.017 CrossRefGoogle Scholar
  17. Fernandes P, Cabral JMS (2007) Phytosterols: applications and recovery methods. Bioresour Technol 98:2335–2350.  https://doi.org/10.1016/j.biortech.2006.10.006 CrossRefPubMedGoogle Scholar
  18. Fernandes P, Cruz A, Angelova B et al (2003) Microbial conversion of steroid compounds: recent developments. Enzyme Microb Technol 32:688–705.  https://doi.org/10.1016/S0141-0229(03)00029-2 CrossRefGoogle Scholar
  19. Heidary M, Habibi Z (2016) Microbial transformation of androst-4-ene-3,17-dione by three fungal species Absidia griseolla var. igachii, Circinella muscae and Trichoderma virens. J Mol Catal B 126:32–36.  https://doi.org/10.1016/j.molcatb.2016.01.007 CrossRefGoogle Scholar
  20. Hogg JA (1992) Steroids, the steroid community, and Upjohn in perspective: a profile of innovation. Steroids 57:593–616.  https://doi.org/10.1016/0039-128X(92)90013-Y CrossRefPubMedGoogle Scholar
  21. Koshimura M, Utsukihara T, Hara A et al (2010) Enzymatic hydroxylation of steroid compounds by Gelasinospora retispora. J Mol Catal B 67:72–77.  https://doi.org/10.1016/j.molcatb.2010.07.008 CrossRefGoogle Scholar
  22. Lamm AS, Chen ARM, Reynolds WF, Reese PB (2007) Steroid hydroxylation by Whetzelinia sclerotiorum, Phanerochaete chrysosporium and Mucor plumbeus. Steroids 72:713–722.  https://doi.org/10.1016/j.steroids.2007.05.008 CrossRefPubMedGoogle Scholar
  23. Li H, Liu HM, Ge W et al (2005) Synthesis of 7α-hydroxy-dehydroepiandrosterone and 7β-hydroxy-dehydroepiandrosterone. Steroids 70:970–973.  https://doi.org/10.1016/j.steroids.2005.07.006 CrossRefPubMedGoogle Scholar
  24. Liu WH, Kuo CW, Wu KL et al (1994) Transformation of cholesterol to testosterone by Mycobacterium sp. J Ind Microbiol 13:167–171.  https://doi.org/10.1007/BF01584002 CrossRefGoogle Scholar
  25. Liu WH, Horng WC, Tsai MS (1996) Bioconversion of cholesterol to cholest-4-en-3-one in aqueous/organic solvent two-phase reactors. Enzyme Microb Technol 18:184–189.  https://doi.org/10.1016/0141-0229(95)00091-7 CrossRefGoogle Scholar
  26. Liu Y, Chen G, Ge F et al (2011) Efficient biotransformation of cholesterol to androsta-1,4-diene-3,17-dione by a newly isolated actinomycete Gordonia neofelifaecis. World J Microbiol Biotechnol 27:759–765.  https://doi.org/10.1007/s11274-010-0513-5 CrossRefGoogle Scholar
  27. Mahato SB, Garai S (1997) Advances in microbial steroid biotransformation. Steroids 62:332–345.  https://doi.org/10.1016/S0039-128X(96)00251-6 CrossRefPubMedGoogle Scholar
  28. Mahato SB, Banerjee S, Podder S (1989) Steroid transformations by microorganisms-III. Phytochemistry 28:7–40.  https://doi.org/10.1016/0031-9422(89)85002-2 CrossRefGoogle Scholar
  29. Malaviya A, Gomes J (2008) Androstenedione production by biotransformation of phytosterols. Bioresour Technol 99:6725–6737.  https://doi.org/10.1016/j.biortech.2008.01.039 CrossRefPubMedGoogle Scholar
  30. Malaviya A, Gomes J (2009) Rapid screening and isolation of a fungus for sitosterol to androstenedione biotransformation. Appl Biochem Biotechnol 158:374–386.  https://doi.org/10.1007/s12010-008-8416-8 CrossRefPubMedGoogle Scholar
  31. Merino E, Barrientos A, Rodríguez J et al (2013) Isolation of cholesterol- and deoxycholate-degrading bacteria from soil samples: evidence of a common pathway. Appl Microbiol Biotechnol 97:891–904.  https://doi.org/10.1007/s00253-012-3966-7 CrossRefPubMedGoogle Scholar
  32. Nagasawa M, Bae M, Tamura G, Arima K (1969) Microbial transformation of sterols. Part I. Decomposition of cholesterol by microorganisms. Agric Biol Chem 3311:1636–1650.  https://doi.org/10.1080/00021369.1969.10859516 CrossRefGoogle Scholar
  33. Nassiri-Koopaei N, Faramarzi MA (2015) Recent developments in the fungal transformation of steroids. Biocatal Biotransform 33:1–28.  https://doi.org/10.3109/10242422.2015.1022533 CrossRefGoogle Scholar
  34. Pang C, Cao Y, Zhu X (2016) Biotransformation of cholesterol and 16,17-alpha epoxypregnenolone by novel Cladosporium sp. strain IS547. J Basic Microbiol 57:12–20.  https://doi.org/10.1002/jobm.201600191 CrossRefPubMedGoogle Scholar
  35. Pendharkar G, Anjum S, Patil S (2014) Enhanced biotransformation of phytosterols, a byproduct of soybean refineries, to key intermediate used for synthesis of steroidal drugs. Asian J Pharm Clin Res 7:178–180Google Scholar
  36. Pitt JI, Hocking A (1997) Fungi and food spoilage, 2nd edn. Blackie Academic and Professional, LondonCrossRefGoogle Scholar
  37. Santos IC, Hildenbrand ZL, Schug KA (2016) Applications of MALDI-TOF MS in environmental microbiology. Analyst 141:2827–2837.  https://doi.org/10.1039/C6AN00131A CrossRefPubMedGoogle Scholar
  38. Sharma P, Slathia PS, Somal P, Mehta P (2012) Biotransformation of cholesterol to 1,4-androstadiene-3,17-dione (ADD) by Nocardia species. Ann Microbiol 62:1651–1659.  https://doi.org/10.1007/s13213-012-0422-y CrossRefGoogle Scholar
  39. Soto-Castro D, Lara Contreras RC, Pina-Canseco M et al (2017) Solvent-free synthesis of 6β-phenylamino-cholestan-3β,5α-diol and (25R)-6β-phenylaminospirostan-3β,5α-diol as potential antiproliferative agents. Steroids 126:92–100.  https://doi.org/10.1016/j.steroids.2017.08.008 CrossRefPubMedGoogle Scholar
  40. Sripalakit P, Wichai U, Saraphanchotiwitthaya A (2006) Biotransformation of various natural sterols to androstenones by Mycobacterium sp. and some steroid-converting microbial strains. J Mol Catal B 41:49–54.  https://doi.org/10.1016/j.molcatb.2006.04.007 CrossRefGoogle Scholar
  41. Swizdor A, Kolek T, Panek A, Milecka N (2012) Selective modifications of steroids performed by oxidative enzymes. Curr Org Chem 16:2551–2582.  https://doi.org/10.2174/138527212804004625 CrossRefGoogle Scholar
  42. Szentirmai A (1990) Microbial side-chain degradation of sterols. J Ind Microbiol 6:101–116.  https://doi.org/10.1007/BF01576429 CrossRefGoogle Scholar
  43. Torshabi M, Badiee M, Faramarzi MA et al (2011) Biotransformation of methyltestosterone by the filamentous fungus Mucor racemosus. Chem Nat Compd.  https://doi.org/10.1007/s10600-011-9830-7 CrossRefGoogle Scholar
  44. Wieser A, Schneider L, Jung J, Schubert S (2012) MALDI-TOF MS in microbiological diagnostics—identification of microorganisms and beyond (mini review). Appl Microbiol Biotechnol 93:965–974.  https://doi.org/10.1007/s00253-011-3783-4 CrossRefPubMedGoogle Scholar
  45. Wu K, Li W, Song J, Li T (2015) Production, purification, and identification of cholest- 4-en-3-one produced by cholesterol oxidase from Rhodococcus sp. in aqueous/organic biphasic system supplementary issue: ligand–receptor interactions and drug design. Biochem Insights 88:1–8.  https://doi.org/10.4137/BCI.S21580 CrossRefGoogle Scholar
  46. Zhu X, Pang C, Cao Y, Fan D (2016) Biotransformation of cholesterol and 16α, 17α-epoxypregnenolone and isolation of hydroxylase in Burkholderia cepacia SE-1. Biomed Res Int.  https://doi.org/10.1155/2016/5727631 CrossRefPubMedPubMedCentralGoogle Scholar

Copyright information

© Springer Nature B.V. 2019

Authors and Affiliations

  1. 1.Laboratorio de Biocatálisis y Biotransformaciones, Departamento de Química Orgánica y, Departamento de Biociencias, Facultad de QuímicaUniversidad de la República (UdelaR)MontevideoUruguay
  2. 2.LaBioChem, Institute of ChemistryUniversity of CampinasCampinasBrazil
  3. 3.Laboratorio de Farmacognosia y Productos Naturales, Departamento de Química Orgánica, Facultad de QuímicaUniversidad de la República (UdelaR)MontevideoUruguay

Personalised recommendations