Advertisement

Biotechnological potential of bacteria isolated from cattle environments of desert soils in Sonora Mexico

  • Itzamná Baqueiro-PeñaEmail author
  • Ali Asaff-Torres
  • Manuel R. Kirchmayr
  • Elisa M. Valenzuela-Soto
  • Arturo Zamora
Original Paper

Abstract

The aim of this research was to study the hydrolytic potential of bacteria isolated from cattle environments of two desert soils in one of the driest and hottest zones in America. A total of 26 points were sampled, 144 strains were isolated, and 50 strains were selected for the characterization of esterase, lipase, protease, and amylase activities and for 16S rRNA identification. Strains of the Bacillus, Pseudomonas, Acinetobacter, Enterobacter, Providencia, Escherichia, and Pantoea genera were identified. Comparisons of the proteolytic activity of the secretome from 14 strains (Bacillus n = 7, Escherichia n = 2; Providencia, Pseudomonas, Enterobacter, Pantoea and Acinetobacter n = 1) were performed. Four strains of Bacillus showed the highest proteolytic activity. These strains were characterized through a comparative analysis of pH and temperature as well as the effects of salt concentration on protease activity. Maximum proteolytic activity occurred in the range of pH 7–9 and temperatures between 50 and 70 °C for B. subtilis WD01, B. tequilensis WS11, B. tequilensis WS13, and B. tequilensis WS14. At a 20% NaCl concentration, the proteolytic activity retained was 71.4%, 65%, and 79.8% for WD01, WS11, and WS13, respectively; the activity of strain WS14 increased with 45% NaCl. Protease production by B. tequilensis WS14 with wheat, fish, and bone flours as low-cost substrates showed no differences between bone and fish flours and showed a decrease in protease production with wheat flour. The proteolytic activity in flour extracts with 20% NaCl was 82%, 75.61% and 38.04% for fish, bone and wheat flours, respectively. Data obtained in this work allow us to propose that strains isolated from environments with extreme conditions have a biotechnological potential.

Keywords

Protease Microbial bioprospecting Soil Growth promoting 

Notes

Acknowledgements

We thank Consejo Nacional de Ciencia y Tecnología in México Grant-251744-Infrastructure.

Compliance with ethical standards

Conflict of interest

The authors have no conflict of interest.

References

  1. Adinarayana K, Ellaiah P, Prasad DS (2003) Purification and partial characterization of thermostable serine alkaline protease from a newly isolated Bacillus subtilis PE-11. AAPS Pharama Sci Tech 4(4):440–448Google Scholar
  2. Altschul SF, Madden TL, Schäffer AA, Zhang J (1997) Gapped BLAST and PSI-BLAST: a new generation of protein database search programs. Nucleic Acids Res 25:3389–3402CrossRefGoogle Scholar
  3. Amulya K, Reddy WV, Mohan SV (2014) Acidogenic spent wash valorization through polyhydroxyalkanoate (PHA) synthesis coupled with fermentative biohydrogen production. Bioresour Technol 158:336–342CrossRefGoogle Scholar
  4. Asoodeh A, Chamani J, Lagzian M (2010) A novel thermostable, acidophilic α-amylase from a new thermophilic “Bacillus sp Ferdowsicous” isolated from Ferdows hot mineral spring in Iran:Purification and biochemical characterization. Int J Biol Macromol 46:289–297CrossRefGoogle Scholar
  5. Bose A, Chawdhary V, Keharia H, Subramaniam RB (2014) Production and charcaterization of a solvent-tolerant protease from a novel marine isolate Bacillus tequilensis P15. Ann Microbiol 64:343–354CrossRefGoogle Scholar
  6. Burns RG, DeForest JL, Marxsen J, Sinsabaugh RL (2003) Soil enzymes in changing environment: current knowledge and future directions. Soil Biol Biochem 58:216–234CrossRefGoogle Scholar
  7. Chikere CB, Obieze CC, Okerentugba P (2015) Molecular assesment of microbial species involved in the biodegradation of crude oil in saline niger delta sediments using bioreactors. J Bioremed Biodeg 6:2–7CrossRefGoogle Scholar
  8. CONAFOR-UACh (2013) Línea base nacional de degradación de tierras y desertificación. Informe final. Comisión Forestal y Universidad Autónoma de ChapingoGoogle Scholar
  9. Cosivi O (2008) Etiology and ecology. Turnbull P,(ed) Anthrax in human and animales. Geneva: World Health Organization, pp 8–16Google Scholar
  10. Dorra G, Ines K. Imen BS, Laurent C, Sana A, Olfa T, Pascal C, Thierry J, Ferid L (2018) Purification and characterization of a novel high molecular weight alkaline protease produced by an endophytic Bacillus halotolerans strain CT2. Int J Biol Macromol 111:342–351CrossRefGoogle Scholar
  11. dos Santos Aguilar JG, Sato HH (2017) Microbial proteases: production and application in obtaining protein hydrolysates. Food Res Int 103:253–262Google Scholar
  12. Ellouz Y, Bayoudh A, Kammoun S, Gharsallah N, Nasri M (2001) Production of protease by Bacillus subtilis grown on sardinelle heads and viscera flour. Bioresour Technol 80:49–51CrossRefGoogle Scholar
  13. Forgetta V, Rempel F, Malouin R, Vaillancourt R (2012) Pathogenic and multidrug resistant Escherichia fergusonii from broiler chicken. Poult Sci 91:512–525CrossRefGoogle Scholar
  14. García-Gómez MJ, Huerta-Ochoa S, Loera-Corral O, Prado-Barragán LA (2009) Advantages of a proteolytic extract by Aspeguillus oryzae from fish flour over a commercial proteolytic preparation. Food Chem 112:604–608CrossRefGoogle Scholar
  15. Gatson JW, Benz BF, Chandrasekaran C, Satomi M (2006) Bacillus tequilensis sp. Nov., isolated from a 2000-year-old Mexican shaft-tomb, is closely related to Bacillus subtilis. Int J Syst Evol Microbiol 56:1475–1484CrossRefGoogle Scholar
  16. Gopal N, Hill C, Ross P, Beresford T, Fenelon MA, Cotter P (2015) The prevalence and Control of Bacillus and related spore-forming bacteria in the dairy industry. Frotn Microbiol 6:1–18Google Scholar
  17. Grimont F, Grimont PA (2006) The Genus Enterobacter. In: Dworkin M, Falkow S, Rosenberg E, Schleifer KH, Stackebrandt E (eds) Prokaryotes. Springer, Singapore, pp 197–214Google Scholar
  18. Habib SMA, Fakhruddin ANM, Begum S, Ahmed MM (2012) Isolation and screening of thermo stable extracellular alkaline protease producing bacteria from tannery effluent. J Sci Res 4:515–522CrossRefGoogle Scholar
  19. Hejnfelt A, Angelidaki I (2009) Anaerobic digestion of slaughterhouse by-products. Biomass Bioenergy 33:1046–1054CrossRefGoogle Scholar
  20. Herranen M, Kariluoto S, Edelmann M, Piironen V (2010) Isolation and characterization of folate-producing bacteria from oat bran and rye flakes. Int J Food Microbiol 142:277–285CrossRefGoogle Scholar
  21. Jain D, Pancha I, Mishra SK, Shrivastav A, Mishra S (2012) Purificaction and characterization of haloalkaline thermoactive, solvent stable and SDS-induced protease from Bacillus sp.; a potential additive for laundry detergents. Bioresour Technol 115:228–236CrossRefGoogle Scholar
  22. Jouadi NZ, Rekik H, Elhoul MB, Rahem FZ, Hila CG, Aicha HS, Badis A, Tumi A, Bejar S, Jaouadi B (2015) A novel keratinase from Bacillus Tequilensis strain Q7 with promising potential for the leather bating process. Int J Biol Macromol 79:952–964CrossRefGoogle Scholar
  23. Kang SJ, Choi NS, Choi JH, Lee JS (2009) Brevundimonas naejangsanensis sp. Nov., a proteolytic bacterium isolated from soil, and reclassification of Mycoplana bullata into genus Brevundimonas as Brevundimonas bullata comb.nov. Int J Syst Evol Microbiol 59:3155–3160CrossRefGoogle Scholar
  24. Khan I, Gupta P, Vakhlu J (2011) Thermo-alkaliphilic halotolerant detergent compatible protease(s) of Bacillus tequilensis MTCC 9585. Afr J Microbiol Res 5:3968–3975CrossRefGoogle Scholar
  25. Kumar AG, Nagesh N, Prabhakar TG, Sekaran G (2008) Purification of extracellular acid protease and analysis of fermentation metabolites by Synergistes sp. utilizing proteinaceous solid waste from tanneries. Bioresour Technol 99:2364–2372CrossRefGoogle Scholar
  26. Lefebvre B, Diarra MS, Giguère K, Roy G (2005) Antibiotic resistance and hypermutability of Escherichia coli O157 from feedlot cattle treated with growth promotin agents. J Food Prot 68:2411–2419CrossRefGoogle Scholar
  27. Lehner A, Riedel K, Rattei T, Ruepp A (2006) Molecular characterization of the α-glucosidase activity in Enterobacter sakasakii reveals the presence of a putative gene cluster for palatinose metabolism. Syst Appl Microbiol 29:609–625CrossRefGoogle Scholar
  28. Li S, Yang X, Zhu M, Wang X (2012) Technology prospecting on enzymes: application, marketing and engineering. Comput Struct Biotechnol J 2:1–11Google Scholar
  29. Lyngwi NA, Joshi SR (2014) Economically important Bacillus and related genera: a mini review. In: Arnab S (ed) Biology of useful plants and microbes. Narosa Publishing House, New Delhi, pp 31–43Google Scholar
  30. Manikandan M, Pašic L, Kannan V (2009) Purification and biological characterization of a Halophilic thermostable protease from Haloferax lucentensis VKMM 007. World J Microbiol Biotechnol 25:2247–2256CrossRefGoogle Scholar
  31. Marchesi JR, Sato T, Weightman AJ, Martin TA (1998) Design and evaluation of useful bacterium-specific PCR primers that amplify genes coding for bacterial 16S rRNA. Appl Environ Microbiol 64:795–799PubMedPubMedCentralGoogle Scholar
  32. Martínez-Martínez M, Alcaide M, Tchigvintsev A, Reva O (2013) Biochemical diversity of carboxyl esterases and lipases from lake Arreo (Spain): a metagenomic approach. Appl Environ Microbiol 79:3553–3562CrossRefGoogle Scholar
  33. Martins ML, Pinto CLO, Rocha RB, de Araújo EF, Vanetti MCD (2006) Genetic diversity of Gram negative, proteolytic, Psychrotrophic bacteria isolated from refrigerated raw milk. Int J Food Microbiol 111:144–148CrossRefGoogle Scholar
  34. Mateos-Díaz E, Rodríguez JA, Camacho-Ruíz MA, Mateos-Díaz JC (2012) High-throughput screening method for lipases/esterases. In: Sandoval G (eds). Springer, New York, pp 89–100Google Scholar
  35. Mukherjee AK, Adhikari H, Rai SK (2008) Production of alkaline protease by a thermophilic Bacillus subtilis under solid state fermentation (SSF) condition usig Imperata cylindrica grass and potato peel as low-cost medium: characterization and application of enzyme in detergent formulation. Biochem Eng J 39:353–361CrossRefGoogle Scholar
  36. Nigam PS (2013) Microbial enzymes with special characteristics for biotechnological applications. Biomolecules 3:597–611CrossRefGoogle Scholar
  37. Nistchke M, Costa S, Contiero J (2011) Rhamnolipids and PHZs: recent reports on pseudomonas. Derived molecules of increasing industrial interest. Process Biochem 46:621–630CrossRefGoogle Scholar
  38. Okamoto DN, Kondo MY, Santos JAN, Nakajima S, Hiraga K, Oda K, Juliano MA, Juliano L, Gouvea IE (2009) Kinetic analysis of salting activation of subtilisin-like halophilic protease. Biochim Biophys Acta 1794:363–373Google Scholar
  39. Patel R, Dodia M, Singh SP (2005) Extracellular alkaline protease from a newly isolated haloalkaliphilic Bacillus sp.: Production and optimization. Process Biochem 40:3569–3575CrossRefGoogle Scholar
  40. Pathak K, Bose A, Keharia H (2014) Characterization of novel lipopeptides produced by Bacillus tequilensis P15 using liquid chromatography coupled electron spray ionization tandem mass spectrometry (LC-ESI-MS/MS). Int J Pept Res Ther 20:133–143CrossRefGoogle Scholar
  41. Pointing S, Fierer N, Smith GJ, Steinberg PD (2016) Quantifying human impact on Earth’s microbiome. Nat Microbiol 1:1–2CrossRefGoogle Scholar
  42. Rana A, Saharan B, Joshi M, Prasanna R (2011) Identification of multi-trait PGPR isolates and evaluation their potential as inoculants for wheat. Ann Microbiol 61:893–900CrossRefGoogle Scholar
  43. Rezaei F, Xing D, Wagner R, Regan JM (2009) Simultaneous cellulose degradation and electricity production by Enterobacter cloacae in a microbial fuel cell. Appl Environm Microbiol 75:3673–3678CrossRefGoogle Scholar
  44. Rezzonico F, Smits TH, Montesinos E, Frey JE (2009) Genotypic comparison of Pantoea agglomerans plant and clinical strains. BMC Microbiol 9:204CrossRefGoogle Scholar
  45. Rohban R, Amoozegar MA, Ventosa A (2009) Screening and isolation of halophilic bacteria producing extracellular hydrolyses from Howz Soltan Lake. Iran. J Ind Microbiol Biotechnol 36:333–340CrossRefGoogle Scholar
  46. Satyanarayana T, Sharma A, Metha D, Puri AK, Kumar V, Nisha M, Joshi S (2012) Biotechnological applications of biocatalysts from firmicutes Bacillus and Geobacillus species. In: Satyanarayana T, Narain B, Johri N, Prakash N (eds) Micoorganisms in sustainable agliculture and biotechnology. Springer, New York, pp 343–380CrossRefGoogle Scholar
  47. Shivanand P, Jayaraman G (2009) Production of extracellular protease from halotolerant bacterium, Bacillus aquimaris Strain VITP4 isolated from Kumta coast. Process Biochem 44:1088–1094CrossRefGoogle Scholar
  48. Siraj NM, Sood K, Yadav RNS (2017) Isolation and identificaction of potential probiotic bacteria from Cattle Farm Soil in Dibrugarh District. AiM 7:265–279CrossRefGoogle Scholar
  49. Slepecky RA, Hemphill HE (2006) The genus Bacillus—nonmedical. In: Dworkin M, Falkow S, Rosenberg E, Schleifer K (eds) The prokaryotes. A handbook of the biology of bacteria. Springer Science Bussines Media, New York, pp 530–555Google Scholar
  50. Sondhi S, Sharma P, Saini S, Puri N, Gupta N (2014) Characterization of an extracellular, thermo-alkali-stable, metal tolerant laccase from Bacillus tequilensis SN4. PLoS ONE 9:e96951CrossRefGoogle Scholar
  51. Soundra FJ, Ramya VS, Neelam D, Suresh BG, Siddalingeshwara KG, Venngopa N. Vishwanatha T (2012) Isolation, production and characterization of protease from Bacillus sp isolated fro soil sample. J Microbiol Biotechnol Res 2:163–168Google Scholar
  52. Trotel-Aziz P, Couderchet M, Biagianti S, Aziz A (2008) Characterization of new bacterial biocontrol agents Acinetobacter, Bacillus, Pantoea and Pseudomonas spp. mediating grapevine resistance against Botrytis cinerea. Environ Exp Bot 64:21–32CrossRefGoogle Scholar
  53. Tsuchida O, Yamagata Y, Ishizuka T, Arai T (1986) An Alkaline proteinase of an Alkalophilic Bacillus sp. Curr Microbiol 14:7–12CrossRefGoogle Scholar
  54. Vanboekhoven K, Ryngaert A, Wattiau P, De Mot R (2004) Acinetobacter diversity in environmental samples assessed by 16 S rRNA gene PCR-DGGE fingerprinting. FEMS Microbiol Ecol 50:37–50CrossRefGoogle Scholar
  55. Vinderola CG, Reinheimer JA (2003) Lactic acid starter and probiotic bacteria: a comparative “in vitro” study of probiotic characteristics and biological resistance. Food Res Int 36:895–904CrossRefGoogle Scholar
  56. Winding A, Hund-Rinke K, Rutgers M (2005) The use of microorganisms in ecological soil classification and assessment concepts. Ecotoxicol Environ Saf 62:230–248CrossRefGoogle Scholar

Copyright information

© Springer Nature B.V. 2018

Authors and Affiliations

  1. 1.Centro de Investigación en Alimentación y DesarrolloHermosilloMexico
  2. 2.CIATEJ-Centro de Investigación y Asistencia en Tecnología y Diseño del Estado de JaliscoZapopanMexico

Personalised recommendations