Advertisement

Manipulation of the microalgal chloroplast by genetic engineering for biotechnological utilization as a green biofactory

  • Yong Min Kwon
  • Kyung Woo Kim
  • Tae-Young Choi
  • Sun Young Kim
  • Jaoon Young Hwan Kim
Review
  • 93 Downloads

Abstract

The chloroplast is an essential organelle in microalgae for conducting photosynthesis, thus enabling the photoautotrophic growth of microalgae. In addition to photosynthesis, the chloroplast is capable of various biochemical processes for the synthesis of proteins, lipids, carbohydrates, and terpenoids. Due to these attractive characteristics, there has been increasing interest in the biotechnological utilization of microalgal chloroplast as a sustainable alternative to the conventional production platforms used in industrial biotechnology. Since the first demonstration of microalgal chloroplast transformation, significant development has occurred over recent decades in the manipulation of microalgal chloroplasts through genetic engineering. In the present review, we describe the advantages of the microalgal chloroplast as a production platform for various bioproducts, including recombinant proteins and high-value metabolites, features of chloroplast genetic systems, and the development of transformation methods, which represent important factors for gene expression in the chloroplast. Furthermore, we address the expression of various recombinant proteins in the microalgal chloroplast through genetic engineering, including reporters, biopharmaceutical proteins, and industrial enzymes. Finally, we present many efforts and achievements in the production of high-value metabolites in the microalgal chloroplast through metabolic engineering. Based on these efforts and advances, the microalgal chloroplast represents an economically viable and sustainable platform for biotechnological applications in the near future.

Keywords

Microalgae Chloroplast Transgene expression Genetic engineering Biotechnological production platform Sustainability 

Notes

Acknowledgements

This work was supported by the Institutional Project (2018M00600) from the National Marine Biodiversity Institute of Korea.

Compliance with ethical standards

Conflict of interest

The authors declare that they have no conflict of interest.

References

  1. Alagia A, Eritja R (2016) siRNA and RNAi optimization. Wiley Interdiscip Rev RNA 7:316–329.  https://doi.org/10.1002/wrna.1337 CrossRefPubMedGoogle Scholar
  2. Baek K, Kim DH, Jeong J, Sim SJ, Melis A, Kim JS5, Jin E, Bae S (2016) DNA-free two-gene knockout in Chlamydomonas reinhardtii via CRISPR-Cas9 ribonucleoproteins. Sci Rep 6:30620.  https://doi.org/10.1038/srep30620 CrossRefPubMedPubMedCentralGoogle Scholar
  3. Barkan A (2011) Expression of plastid genes: organelle-specific elaborations on a prokaryotic scaffold. Plant Physiol 155:1520–1532.  https://doi.org/10.1104/pp.110.171231 CrossRefPubMedPubMedCentralGoogle Scholar
  4. Barnes D, Franklin S, Schultz J, Henry R, Brown E, Coragliotti A, Mayfield SP (2005) Contribution of 5′- and 3′-untranslated regions of plastid mRNAs to the expression of Chlamydomonas reinhardtii chloroplast genes. Mol Genet Genomics 274:625–636.  https://doi.org/10.1007/s00438-005-0055-y CrossRefPubMedGoogle Scholar
  5. Barrera DJ, Rosenberg JN, Chiu JG, Chang YN, Debatis M, Ngoi SM, Chang JT, Shoemaker CB, Oyler GA, Mayfield SP (2015) Algal chloroplast produced camelid VH H antitoxins are capable of neutralizing botulinum neurotoxin. Plant Biotechnol J 13:117–124.  https://doi.org/10.1111/pbi.12244 CrossRefPubMedGoogle Scholar
  6. Bateman JM, Purton S (2000) Tools for chloroplast transformation in Chlamydomonas: expression vectors and a new dominant selectable marker. Mol Gen Genet 263:404–410.  https://doi.org/10.1007/s004380051184 CrossRefPubMedGoogle Scholar
  7. Bhattacharya D, Yoon HS, Hackett JD (2004) Photosynthetic eukaryotes unite: endosymbiosis connects the dots. BioEssays 26:50–60.  https://doi.org/10.1002/bies.10376 CrossRefPubMedGoogle Scholar
  8. Boynton JE, Gillham NW, Harris EH, Hosler JP, Johnson AM, Jones AR, Randolph-Anderson BL, Robertson D, Klein TM, Shark KB, Sanford JC (1988) Chloroplast transformation in Chlamydomonas with high velocity microprojectiles. Science 240:1534–1538.  https://doi.org/10.1126/science.2897716 CrossRefPubMedGoogle Scholar
  9. Brasil B, de Siqueira FG, Salum TFC, Zanette CM, Spier MR (2017) Microalgae and cyanobacteria as enzyme biofactories. Algal Res 25:76–89.  https://doi.org/10.1016/j.algal.2017.04.035 CrossRefGoogle Scholar
  10. Braun-Galleani S, Baganz F, Purton S (2015) Improving recombinant protein production in the Chlamydomonas reinhardtii chloroplast using vivid Verde Fluorescent Protein as a reporter. Biotechnol J 10:1289–1297.  https://doi.org/10.1002/biot.201400566 CrossRefPubMedPubMedCentralGoogle Scholar
  11. Campbell WH, Gowri G (1990) Codon usage in higher plants, green algae, and cyanobacteria. Plant Physiol 92:1–11.  https://doi.org/10.1104/pp.92.1.1 CrossRefPubMedPubMedCentralGoogle Scholar
  12. Chen HC, Melis A (2013) Marker-free genetic engineering of the chloroplast in the green microalga Chlamydomonas reinhardtii. Plant Biotechnol J 11:818–828.  https://doi.org/10.1111/pbi.12073 CrossRefPubMedGoogle Scholar
  13. Cheng Q, Day A, Dowson-Day M, Shen GF, Dixon R (2005) The Klebsiella pneumoniae nitrogenase Fe protein gene (nifH) functionally substitutes for the chlL gene in Chlamydomonas reinhardtii. Biochem Biophys Res Commun 329:966–975.  https://doi.org/10.1016/j.bbrc.2005.02.064 CrossRefPubMedGoogle Scholar
  14. Couso I, Vila M, Rodriguez H, Vargas MA, León R (2011) Overexpression of an exogenous phytoene synthase gene in the unicellular alga Chlamydomonas reinhardtii leads to an increase in the content of carotenoids. Biotechnol Prog 27:54–60.  https://doi.org/10.1002/btpr.527 CrossRefPubMedGoogle Scholar
  15. Daniell H, Lin CS, Yu M, Chang WJ (2016) Chloroplast genomes: diversity, evolution, and applications in genetic engineering. Genome Biol 17:134.  https://doi.org/10.1186/s13059-016-1004-2 CrossRefPubMedPubMedCentralGoogle Scholar
  16. Day A, Goldschmidt-Clermont M (2011) The chloroplast transformation toolbox: selectable markers and marker removal. Plant Biotechnol J 9:540–553.  https://doi.org/10.1111/j.1467-7652.2011.00604.x CrossRefPubMedGoogle Scholar
  17. de Vries J, Gould SB (2018) The monoplastidic bottleneck in algae and plant evolution. J Cell Sci 131:jcs203414.  https://doi.org/10.1242/jcs.203414 CrossRefPubMedGoogle Scholar
  18. Debuchy R, Purton S, Rochaix JD (1989) The argininosuccinate lyase gene of Chlamydomonas reinhardtii: an important tool for nuclear transformation and for correlating the genetic and molecular maps of the ARG7 locus. EMBO J 8:2803–2809.  https://doi.org/10.1002/j.1460-2075.1989.tb08426.x CrossRefPubMedPubMedCentralGoogle Scholar
  19. Demurtas OC, Massa S, Ferrante P, Venuti A, Franconi R, Giuliano G (2013) A Chlamydomonas-derived Human Papillomavirus 16 E7 vaccine induces specific tumor protection. PLoS ONE 8:e61473.  https://doi.org/10.1371/journal.pone.0061473 CrossRefPubMedPubMedCentralGoogle Scholar
  20. Doron L, Segal N, Shapira M (2016) Transgene expression in microalgae—from tools to applications. Front Plant Sci 7:505.  https://doi.org/10.3389/fpls.2016.00505 CrossRefPubMedPubMedCentralGoogle Scholar
  21. Dreesen IA, Charpin-El Hamri G, Fussenegger M (2010) Heat-stable oral alga-based vaccine protects mice from Staphylococcus aureus infection. J Biotechnol 145:273–280.  https://doi.org/10.1016/j.jbiotec.2009.12.006 CrossRefPubMedGoogle Scholar
  22. Economou C, Wannathong T, Szaub J, Purton S (2014) A simple, low-cost method for chloroplast transformation of the green alga Chlamydomonas reinhardtii. Methods Mol Biol 1132:401–411.  https://doi.org/10.1007/978-1-62703-995-6_27 CrossRefPubMedGoogle Scholar
  23. Endo H, Yoshida M, Uji T, Saga N, Inoue K, Nagasawa H (2016) Stable nuclear transformation system for the coccolithophorid alga Pleurochrysis carterae. Sci Rep 6:22252.  https://doi.org/10.1038/srep22252 CrossRefPubMedPubMedCentralGoogle Scholar
  24. Faè M, Accossato S, Cella R, Fontana F, Goldschmidt-Clermont M, Leelavathi S, Reddy VS, Longoni P (2017) Comparison of transplastomic Chlamydomonas reinhardtii and Nicotiana tabacum expression system for the production of a bacterial endoglucanase. Appl Microbiol Biotechnol 101:4085–4092.  https://doi.org/10.1007/s00253-017-8164-1 CrossRefPubMedGoogle Scholar
  25. Franklin S, Ngo B, Efuet E, Mayfield SP (2002) Development of a GFP reporter gene for Chlamydomonas reinhardtii chloroplast. Plant J 30:733–744.  https://doi.org/10.1046/j.1365-313X.2002.01319.x CrossRefPubMedGoogle Scholar
  26. Fukusaki E, Nishikawa T, Kato K, Shinmyo A, Hemmi H, Nishino T, Kobayashi A (2003) Introduction of the archaebacterial geranylgeranyl pyrophosphate synthase gene into Chlamydomonas reinhardtii chloroplast. J Biosci Bioeng 95:283–287.  https://doi.org/10.1016/S1389-1723(03)80030-0 CrossRefPubMedGoogle Scholar
  27. Gaj T, Gersbach CA, Barbas CF III (2013) ZFN, TALEN, and CRISPR/Cas-based methods for genome engineering. Trends Biotechnol 31:397–405.  https://doi.org/10.1016/j.tibtech.2013.04.004 CrossRefPubMedPubMedCentralGoogle Scholar
  28. Gan Q, Jiang J, Han X, Wang S, Lu Y (2018) Engineering the chloroplast genome of oleaginous marine microalga Nannochloropsis oceanica. Front Plant Sci 9:439.  https://doi.org/10.3389/fpls.2018.00439 CrossRefPubMedPubMedCentralGoogle Scholar
  29. Gangl D, Zedler JA, Rajakumar PD, Martinez EM, Riseley A, Włodarczyk A, Purton S, Sakuragi Y, Howe CJ, Jensen PE, Robinson C (2015a) Biotechnological exploitation of microalgae. J Exp Bot 66:6975–6990.  https://doi.org/10.1093/jxb/erv426 CrossRefPubMedGoogle Scholar
  30. Gangl D, Zedler JA, Włodarczyk A, Jensen PE, Purton S, Robinson C (2015b) Expression and membrane-targeting of an active plant cytochrome P450 in the chloroplast of the green alga Chlamydomonas reinhardtii. Phytochemistry 110:22–28.  https://doi.org/10.1016/j.phytochem.2014.12.006 CrossRefPubMedGoogle Scholar
  31. Gao H, Wright DA, Li T, Wang Y, Horken K, Weeks DP, Yang B, Spalding MH (2014) TALE activation of endogenous genes in Chlamydomonas reinhardtii. Algal Res 5:52–60.  https://doi.org/10.1016/j.algal.2014.05.003 CrossRefGoogle Scholar
  32. Georgianna DR, Hannon MJ, Marcuschi M, Wu S, Botsch K, Lewis AJ, Hyun J, Mendez M, Mayfield SP (2013) Production of recombinant enzymes in the marine alga Dunaliella tertiolecta. Algal Res 2:2–9.  https://doi.org/10.1016/j.algal.2012.10.004 CrossRefGoogle Scholar
  33. Gimpel JA, Henríquez V, Mayfield SP (2015) In metabolic engineering of eukaryotic microalgae: potential and challenges come with great diversity. Front Microbiol 6:1376.  https://doi.org/10.3389/fmicb.2015.01376 CrossRefPubMedPubMedCentralGoogle Scholar
  34. Goldschmidt-Clermont M (1991) Transgenic expression of aminoglycoside adenine transferase in the chloroplast: a selectable marker of site-directed transformation of Chlamydomonas. Nucleic Acids Res 19:4083–4089.  https://doi.org/10.1093/nar/19.15.4083 CrossRefPubMedPubMedCentralGoogle Scholar
  35. Gray MW (1993) Origin and evolution of organelle genomes. Curr Opin Genet Dev 3:884–890.  https://doi.org/10.1016/0959-437X(93)90009-E CrossRefPubMedGoogle Scholar
  36. Gregory JA, Li F, Tomosada LM, Cox CJ, Topol AB, Vinetz JM, Mayfield S (2012) Algae-produced Pfs25 elicits antibodies that inhibit malaria transmission. PLoS ONE 7:e37179.  https://doi.org/10.1371/journal.pone.0037179 CrossRefPubMedPubMedCentralGoogle Scholar
  37. Guiry MD (2012) How many species of algae are there? J Phycol 48:1057–1063.  https://doi.org/10.1111/j.1529-8817.2012.01222.x CrossRefPubMedGoogle Scholar
  38. Harris EH, Burkhart BD, Gillham NW, Boynton JE (1989) Antibiotic resistance mutations in the chloroplast 16S and 23S rRNA genes of Chlamydomonas reinhardtii: correlation of genetic and physical maps of the chloroplast genome. Genetics 123:281–292PubMedPubMedCentralGoogle Scholar
  39. He DM, Qian KX, Shen GF, Zhang ZF, Li YN, Su ZL, Shao HB (2007) Recombination and expression of classical swine fever virus (CSFV) structural protein E2 gene in Chlamydomonas reinhardtii chloroplasts. Colloids Surf B 55:26–30.  https://doi.org/10.1016/j.colsurfb.2006.10.042 CrossRefGoogle Scholar
  40. Hempel F, Maier UG (2016) Microalgae as solar-powered protein factories. In: Vega M (ed) Advanced technologies for protein complex production and characterization. Advances in experimental medicine and biology, vol 896. Springer, Cham, p 241–262.  https://doi.org/10.1007/978-3-319-27216-0_16 CrossRefGoogle Scholar
  41. Ishikura K, Takaoka Y, Kato K, Sekine M, Yoshida K, Shinmyo A (1999) Expression of a foreign gene in Chlamydomonas reinhardtii chloroplast. J Biosci Bioeng 87:307–314.  https://doi.org/10.1016/S1389-1723(99)80037-1 CrossRefPubMedGoogle Scholar
  42. Jeon S, Lim JM, Lee HG, Shin SE, Kang NK, Park YI, Oh HM, Jeong WJ, Jeong BR, Chang YK (2017) Current status and perspectives of genome editing technology for microalgae. Biotechnol Biofuels 10:267.  https://doi.org/10.1186/s13068-017-0957-z CrossRefPubMedPubMedCentralGoogle Scholar
  43. Kang S, Odom OW, Thangamani S, Herrin DL (2017) Toward mosquito control with a green alga: expression of Cry toxins of Bacillus thuringiensis subsp. israelensis (Bti) in the chloroplast of Chlamydomonas. J Appl Phycol 29:1377–1389.  https://doi.org/10.1007/s10811-016-1008-z CrossRefPubMedGoogle Scholar
  44. Kato K, Marui T, Kasai S, Shinmyo A (2007) Artificial control of transgene expression in Chlamydomonas reinhardtii chloroplast using the lac regulation system from Escherichia coli. J Biosci Bioeng 104:207–213.  https://doi.org/10.1263/jbb.104.207 CrossRefPubMedGoogle Scholar
  45. Kilian O, Benemann CS, Niyogi KK, Vick B (2011) High-efficiency homologous recombination in the oil-producing alga Nannochloropsis sp. Proc Natl Acad Sci USA 108:21265–21269.  https://doi.org/10.1073/pnas.1105861108 CrossRefPubMedGoogle Scholar
  46. Kindle KL, Richards KL, Stern DB (1991) Engineering the chloroplast genome: techniques and capabilities for chloroplast transformation in Chlamydomonas reinhardtii. Proc Natl Acad Sci USA 88:1721–1725.  https://doi.org/10.1073/pnas.88.5.1721 CrossRefPubMedGoogle Scholar
  47. Kostylev M, Otwell AE, Richardson RE, Suzuki Y (2015) Cloning should be simple: Escherichia coli DH5α-mediated assembly of multiple DNA fragments with short end homologies. PLoS ONE 10:e0137466.  https://doi.org/10.1371/journal.pone.0137466 CrossRefPubMedPubMedCentralGoogle Scholar
  48. León R, Couso I, Fernández E (2007) Metabolic engineering of ketocarotenoids biosynthesis in the unicellular microalga Chlamydomonas reinhardtii. J Biotechnol 130:143–152.  https://doi.org/10.1016/j.jbiotec.2007.03.005 CrossRefPubMedGoogle Scholar
  49. Li F, Gao D, Hu H (2014) High-efficiency nuclear transformation of the oleaginous marine Nannochloropsis species using PCR product. Biosci Biotechnol Biochem 78:812–817.  https://doi.org/10.1080/09168451.2014.905184 CrossRefPubMedGoogle Scholar
  50. Manuell AL, Beligni MV, Elder JH, Siefker DT, Tran M, Weber A, McDonald TL, Mayfield SP (2007) Robust expression of a bioactive mammalian protein in Chlamydomonas chloroplast. Plant Biotechnol J 5:402–412.  https://doi.org/10.1111/j.1467-7652.2007.00249.x CrossRefPubMedGoogle Scholar
  51. Marín-Navarro J, Manuell AL, Wu J, Mayfield SP (2007) Chloroplast translation regulation. Photosynth Res 94:359–374.  https://doi.org/10.1007/s11120-007-9183-z CrossRefPubMedGoogle Scholar
  52. Mayfield SP, Schultz J (2004) Development of a luciferase reporter gene, luxCt, for Chlamydomonas reinhardtii chloroplast. Plant J 37:449–458.  https://doi.org/10.1046/j.1365-313X.2003.01965.x CrossRefPubMedGoogle Scholar
  53. Mayfield SP, Franklin SE, Lerner RA (2003) Expression and assembly of a fully active antibody in algae. Proc Natl Acad Sci USA 100:438–442.  https://doi.org/10.1073/pnas.0237108100 CrossRefPubMedGoogle Scholar
  54. Mayfield SP, Manuell AL, Chen S, Wu J, Tran M, Siefker D, Muto M, Marin-Navarro J (2007) Chlamydomonas reinhardtii chloroplasts as protein factories. Curr Opin Biotechnol 18:126–133.  https://doi.org/10.1016/j.copbio.2007.02.001 CrossRefPubMedGoogle Scholar
  55. Michelet L, Lefebvre-Legendre L, Burr SE, Rochaix JD, Goldschmidt-Clermont M (2011) Enhanced chloroplast transgene expression in a nuclear mutant of Chlamydomonas. Plant Biotechnol J 9:565–574.  https://doi.org/10.1111/j.1467-7652.2010.00564.x CrossRefPubMedGoogle Scholar
  56. Minko I, Holloway SP, Nikaido S, Carter M, Odom OW, Johnson CH, Herrin DL (1999) Renilla luciferase as a vital reporter for chloroplast gene expression in Chlamydomonas. Mol Gen Genet 262:421–425.  https://doi.org/10.1007/s004380051101 CrossRefPubMedGoogle Scholar
  57. Minoda A, Sakagami R, Yagisawa F, Kuroiwa T, Tanaka K (2004) Improvement of culture conditions and evidence for nuclear transformation by homologous recombination in a red alga, Cyanidioschyzon merolae 10D. Plant Cell Physiol 45:667–671.  https://doi.org/10.1093/pcp/pch087 CrossRefPubMedGoogle Scholar
  58. Moellering ER, Benning C (2010) RNA interference silencing of a major lipid droplet protein affects lipid droplet size in Chlamydomonas reinhardtii. Eukaryot Cell 9:97–106.  https://doi.org/10.1128/EC.00203-09 CrossRefPubMedGoogle Scholar
  59. Nakamura Y, Gojobori T, Ikemura T (1999) Codon usage tabulated from the international DNA sequence databases; its status 1999. Nucleic Acids Res 27:292.  https://doi.org/10.1093/nar/27.1.292 CrossRefPubMedPubMedCentralGoogle Scholar
  60. Nakazato E, Fukuzawa H, Tabata S, Takahashi H, Tanaka K (2003) Identification and expression analysis of cDNA encoding a chloroplast recombination protein REC1, the chloroplast RecA homologue in Chlamydomonas reinhardtii. Biosci Biotechnol Biochem 67:2608–2613.  https://doi.org/10.1271/bbb.67.2608 CrossRefPubMedGoogle Scholar
  61. Ng IS, Tan SI, Kao PH, Chang YK, Chang JS (2017) Recent developments on genetic engineering of microalgae for biofuels and bio-based chemicals. Biotechnol J 12:1600644.  https://doi.org/10.1002/biot.201600644 CrossRefGoogle Scholar
  62. Nielsen AZ, Mellor SB, Vavitsas K, Wlodarczyk AJ, Gnanasekaran T, Perestrello Ramos H, de Jesus M, King BC, Bakowski K, Jensen PE (2016) Extending the biosynthetic repertoires of cyanobacteria and chloroplasts. Plant J 87:87–102.  https://doi.org/10.1111/tpj.13173 CrossRefPubMedGoogle Scholar
  63. Nymark M, Sharma AK, Sparstad T, Bones AM, Winge P (2016) A CRISPR/Cas9 system adapted for gene editing in marine algae. Sci Rep 6:24951.  https://doi.org/10.1038/srep24951 CrossRefPubMedPubMedCentralGoogle Scholar
  64. Ochoa-Méndez CE, Lara-Hernández I, González LM, Aguirre-Bañuelos P, Ibarra-Barajas M, Castro-Moreno P, González-Ortega O, Soria-Guerra RE (2016) Bioactivity of an antihypertensive peptide expressed in Chlamydomonas reinhardtii. J Biotechnol 240:76–84.  https://doi.org/10.1016/j.jbiotec.2016.11.001 CrossRefPubMedGoogle Scholar
  65. Puigbò P, Guzmán E, Romeu A, Garcia-Vallvé S (2007) OPTIMIZER: a web server for optimizing the codon usage of DNA sequences. Nucleic Acids Res 35:W126–W131.  https://doi.org/10.1093/nar/gkm219 CrossRefPubMedPubMedCentralGoogle Scholar
  66. Puigbò P, Bravo IG, Garcia-Vallvé S (2008) E-CAI: a novel server to estimate an expected value of Codon Adaptation Index (eCAI). BMC Bioinform 9:65.  https://doi.org/10.1186/1471-2105-9-65 CrossRefGoogle Scholar
  67. Purton S (2007) Tools and techniques for chloroplast transformation of Chlamydomonas. In: León R, Galván A, Fernández E (eds) Transgenic microalgae as green cell factories. Advances in experimental medicine and biology, vol 616. Springer, New York, p 34–45.  https://doi.org/10.1007/978-0-387-75532-8_4 CrossRefGoogle Scholar
  68. Purton S, Szaub JB, Wannathong T, Young R, Economou CK (2013) Genetic engineering of algal chloroplasts: progress and prospects. Russ J Plant Physiol 60:491–499.  https://doi.org/10.1134/S1021443713040146 CrossRefGoogle Scholar
  69. Ramos-Martinez EM, Fimognari L, Sakuragi Y (2017) High-yield secretion of recombinant proteins from the microalga Chlamydomonas reinhardtii. Plant Biotechnol J 15:1214–1224.  https://doi.org/10.1111/pbi.12710 CrossRefPubMedPubMedCentralGoogle Scholar
  70. Rasala BA, Mayfield SP (2015) Photosynthetic biomanufacturing in green algae; production of recombinant proteins for industrial, nutritional, and medical uses. Photosynth Res 123:227–239.  https://doi.org/10.1007/s11120-014-9994-7 CrossRefPubMedGoogle Scholar
  71. Rasala BA, Muto M, Lee PA, Jager M, Cardoso RM, Behnke CA, Kirk P, Hokanson CA, Crea R, Mendez M, Mayfield SP (2010) Production of therapeutic proteins in algae, analysis of expression of seven human proteins in the chloroplast of Chlamydomonas reinhardtii. Plant Biotechnol J 8:719–733.  https://doi.org/10.1111/j.1467-7652.2010.00503.x CrossRefPubMedPubMedCentralGoogle Scholar
  72. Redding K, MacMillan F, Leibl W, Brettel K, Hanley J, Rutherford AW, Breton J, Rochaix JD (1998) A systematic survey of conserved histidines in the core subunits of Photosystem I by site-directed mutagenesis reveals the likely axial ligands of P700. EMBO J 17:50–60.  https://doi.org/10.1093/emboj/17.1.50 CrossRefPubMedPubMedCentralGoogle Scholar
  73. Remacle C, Cline S, Boutaffala L, Gabilly S, Larosa V, Barbieri MR, Coosemans N, Hamel PP (2009) The ARG9 gene encodes the plastid-resident N-acetyl ornithine aminotransferase in the green alga Chlamydomonas reinhardtii. Eukaryot Cell 8:1460–1463.  https://doi.org/10.1128/EC.00108-09 CrossRefPubMedPubMedCentralGoogle Scholar
  74. Rosales-Mendoza S, Paz-Maldonado LM, Soria-Guerra RE (2012) Chlamydomonas reinhardtii as a viable platform for the production of recombinant proteins: current status and perspectives. Plant Cell Rep 31:479–494.  https://doi.org/10.1007/s00299-011-1186-8 CrossRefPubMedGoogle Scholar
  75. Roth MS, Cokus SJ, Gallaher SD, Walter A, Lopez D, Erickson E, Endelman B, Westcott D, Larabell CA, Merchant SS, Pellegrini M, Niyogi KK (2017) Chromosome-level genome assembly and transcriptome of the green alga Chromochloris zofingiensis illuminates astaxanthin production. Proc Natl Acad Sci USA 114:E4296–E4305.  https://doi.org/10.1073/pnas.1619928114 CrossRefPubMedGoogle Scholar
  76. Rott R, Liveanu V, Drager RG, Stern DB, Schuster G (1998) The sequence and structure of the 3′-untranslated regions of chloroplast transcripts are important determinants of mRNA accumulation and stability. Plant Mol Biol 36:307–314.  https://doi.org/10.1023/A:1005943701253 CrossRefPubMedGoogle Scholar
  77. Sakamoto W, Kindle KL, Stern DB (1993) In vivo analysis of Chlamydomonas chloroplast petD gene expression using stable transformation of β-glucuronidase translational fusions. Proc Natl Acad Sci USA 90:497–501.  https://doi.org/10.1073/pnas.90.2.497 CrossRefPubMedGoogle Scholar
  78. Scaife MA, Nguyen GT, Rico J, Lambert D, Helliwell KE, Smith AG (2015) Establishing Chlamydomonas reinhardtii as an industrial biotechnology host. Plant J 82:532–546.  https://doi.org/10.1111/tpj CrossRefPubMedPubMedCentralGoogle Scholar
  79. Scharff LB, Bock R (2014) Synthetic biology in plastids. Plant J 78:783–798.  https://doi.org/10.1111/tpj.12356 CrossRefPubMedGoogle Scholar
  80. Shamriz S, Ofoghi H (2016) Outlook in the application of Chlamydomonas reinhardtii chloroplast as a platform for recombinant protein production. Biotechnol Genet Eng Rev 32:92–106.  https://doi.org/10.1080/02648725.2017.1307673 CrossRefPubMedGoogle Scholar
  81. Sharp PM, Li WH (1987) The codon Adaptation Index—a measure of directional synonymous codon usage bias, and its potential applications. Nucleic Acids Res 15:1281–1295.  https://doi.org/10.1093/nar/15.3.1281 CrossRefPubMedPubMedCentralGoogle Scholar
  82. Shin SE, Lim JM, Koh HG, Kim EK, Kang NK, Jeon S, Kwon S, Shin WS, Lee B, Hwangbo K, Kim J, Ye SH, Yun JY, Seo H, Oh HM, Kim KJ, Kim JS, Jeong WJ, Chang YK, Jeong BR (2016) CRISPR/Cas9-induced knockout and knock-in mutations in Chlamydomonas reinhardtii. Sci Rep 6:27810.  https://doi.org/10.1038/srep27810 CrossRefPubMedPubMedCentralGoogle Scholar
  83. Sizova I, Greiner A, Awasthi M, Kateriya S, Hegemann P (2013) Nuclear gene targeting in Chlamydomonas using engineered zinc-finger nucleases. Plant J 73:873–882.  https://doi.org/10.1111/tpj.12066 CrossRefPubMedGoogle Scholar
  84. Specht EA, Mayfield SP (2013) Synthetic oligonucleotide libraries reveal novel regulatory elements in Chlamydomonas chloroplast mRNAs. ACS Synth Biol 2:34–46.  https://doi.org/10.1021/sb300069k CrossRefPubMedGoogle Scholar
  85. Steinbrenner J, Sandmann G (2006) Transformation of the green alga Haematococcus pluvialis with a phytoene desaturase for accelerated astaxanthin biosynthesis. Appl Environ Microbiol 72:7477–7484.  https://doi.org/10.1128/AEM.01461-06 CrossRefPubMedPubMedCentralGoogle Scholar
  86. Stephens E, Wolf J, Oey M, Zhang E, Hankamer B, Ross IL (2015) Genetic engineering for microalgae strain improvement in relation to biocrude production systems. In: Moheimani N, McHenry M, de Boer K, Bahri P (eds) Biomass and biofuels from microalgae. Biofuel and biorefinery technologies, vol 2. Springer, Cham, p 191–249.  https://doi.org/10.1007/978-3-319-16640-7_11 CrossRefGoogle Scholar
  87. Stoffels L, Taunt HN, Charalambous B, Purton S (2017) Synthesis of bacteriophage lytic proteins against Streptococcus pneumoniae in the chloroplast of Chlamydomonas reinhardtii. Plant Biotechnol J 15:1130–1140.  https://doi.org/10.1111/pbi.12703 CrossRefPubMedPubMedCentralGoogle Scholar
  88. Sun M, Qian K, Su N, Chang H, Liu J, Shen G (2003) Foot-and-mouth disease virus VP1 protein fused with cholera toxin B subunit expressed in Chlamydomonas reinhardtii chloroplast. Biotechnol Lett 25:1087–1092.  https://doi.org/10.1023/A:1024140114505 CrossRefPubMedGoogle Scholar
  89. Sun G, Zhang X, Sui Z, Mao Y (2008) Inhibition of pds gene expression via the RNA interference approach in Dunaliella salina (Chlorophyta). Mar Biotechnol 10:219–226.  https://doi.org/10.1007/s10126-007-9056-7 CrossRefPubMedGoogle Scholar
  90. Surzycki R, Cournac L, Peltier G, Rochaix JD (2007) Potential for hydrogen production with inducible chloroplast gene expression in Chlamydomonas. Proc Natl Acad Sci USA 104:17548–17553.  https://doi.org/10.1073/pnas.0704205104 CrossRefPubMedGoogle Scholar
  91. Surzycki R, Greenham K, Kitayama K, Dibal F, Wagner R, Rochaix JD, Ajam T, Surzycki S (2009) Factors effecting expression of vaccines in microalgae. Biologicals 37:133–138.  https://doi.org/10.1016/j.biologicals.2009.02.005 CrossRefPubMedGoogle Scholar
  92. Tan CP, Zhao FQ, Su ZL, Liang CW, Qin S (2007) Expression of β-carotene hydroxylase gene (crtR-B) from the green alga Haematococcus pluvialis in chloroplasts of Chlamydomonas reinhardtii. J Appl Phycol 19:347–355.  https://doi.org/10.1007/s10811-006-9141-8 CrossRefGoogle Scholar
  93. Taunt HN, Stoffels L, Purton S (2018) Green biologics: the algal chloroplast as a platform for making biopharmaceuticals. Bioengineered 9:48–54.  https://doi.org/10.1080/21655979.2017.1377867 CrossRefPubMedGoogle Scholar
  94. Timmis JN, Ayliffe MA, Huang CY, Martin W (2004) Endosymbiotic gene transfer: organelle genomes forge eukaryotic chromosomes. Nat Rev Genet 5:123–135.  https://doi.org/10.1038/nrg1271 CrossRefPubMedGoogle Scholar
  95. Tran M, Zhou B, Pettersson PL, Gonzalez MJ, Mayfield SP (2009) Synthesis and assembly of a full-length human monoclonal antibody in algal chloroplasts. Biotechnol Bioeng 104:663–673.  https://doi.org/10.1002/bit.22446 CrossRefPubMedGoogle Scholar
  96. Tran M, Van C, Barrera DJ, Pettersson PL, Peinado CD, Bui J, Mayfield SP (2013) Production of unique immunotoxin cancer therapeutics in algal chloroplasts. Proc Natl Acad Sci USA 110:E15–E22.  https://doi.org/10.1073/pnas.1214638110 CrossRefPubMedGoogle Scholar
  97. Wang X, Ruan Z, Boileau D, Sears BB, Liu Y, Liao W (2015) Transgenic expression of a bacterial thermophilic amylase in the Chlamydomonas reinhardtii chloroplast to facilitate algal biofuel production. Bioenergy Res 8:527–536.  https://doi.org/10.1007/s12155-014-9538-1 CrossRefGoogle Scholar
  98. Wang Q, Lu Y, Xin Y, Wei L, Huang S, Xu J (2016) Genome editing of model oleaginous microalgae Nannochloropsis spp. by CRISPR/Cas9. Plant J 88:1071–1081.  https://doi.org/10.1111/tpj.13307 CrossRefPubMedGoogle Scholar
  99. Wannathong T, Waterhouse JC, Young RE, Economou CK, Purton S (2016) New tools for chloroplast genetic engineering allow the synthesis of human growth hormone in the green alga Chlamydomonas reinhardtii. Appl Microbiol Biotechnol 100:5467–5477.  https://doi.org/10.1007/s00253-016-7354-6 CrossRefPubMedPubMedCentralGoogle Scholar
  100. Yagi Y, Shiina T (2014) Recent advances in the study of chloroplast gene expression and its evolution. Front Plant Sci 5:61.  https://doi.org/10.3389/fpls.2014.00061 CrossRefPubMedPubMedCentralGoogle Scholar
  101. Yan N, Fan C, Chen Y, Hu Z (2016) The potential for microalgae as bioreactors to produce pharmaceuticals. Int J Mol Sci 17:962.  https://doi.org/10.3390/ijms17060962 CrossRefPubMedCentralGoogle Scholar
  102. Yoon SM, Kim SY, Li KF, Yoon BH, Choe S, Kuo MM (2011) Transgenic microalgae expressing Escherichia coli AppA phytase as feed additive to reduce phytate excretion in the manure of young broiler chicks. Appl Microbiol Biotechnol 91:553–563.  https://doi.org/10.1007/s00253-011-3279-2 CrossRefPubMedGoogle Scholar
  103. Zedler JAZ, Gangl D, Hamberger B, Purton S, Robinson C (2015) Stable expression of a bifunctional diterpene synthase in the chloroplast of Chlamydomonas reinhardtii. J Appl Phycol 27:2271–2277.  https://doi.org/10.1007/s10811-014-0504-2 CrossRefGoogle Scholar
  104. Zhao T, Li G, Mi S, Li S, Hannon GJ, Wang XJ, Qi Y (2007) A complex system of small RNAs in the unicellular green alga Chlamydomonas reinhardtii. Genes Dev 21:1190–1203.  https://doi.org/10.1101/gad.1543507 CrossRefPubMedPubMedCentralGoogle Scholar
  105. Zorin B, Hegemann P, Sizova I (2005) Nuclear-gene targeting by using single-stranded DNA avoids illegitimate DNA integration in Chlamydomonas reinhardtii. Eukaryot Cell 4:1264–1272.  https://doi.org/10.1128/EC.4.7.1264-1272.2005 CrossRefPubMedPubMedCentralGoogle Scholar

Copyright information

© Springer Nature B.V. 2018

Authors and Affiliations

  1. 1.Department of Applied ResearchNational Marine Biodiversity Institute of KoreaSeocheonRepublic of Korea
  2. 2.Department of Genetic Resources ResearchNational Marine Biodiversity Institute of KoreaSeocheonRepublic of Korea

Personalised recommendations